Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Korean J Physiol Pharmacol ; 25(4): 365-374, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34187953

RESUMO

The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 µl) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia.

2.
Mol Pain ; 15: 1744806919843046, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30900515

RESUMO

Spinal D-serine plays an important role in nociception via an increase in phosphorylation of the N-Methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). However, the cellular mechanisms underlying this process have not been elucidated. Here, we investigate the possible role of neuronal nitric oxide synthase (nNOS) in the D-serine-induced potentiation of NMDA receptor function and the induction of neuropathic pain in a chronic constriction injury (CCI) model. Intrathecal administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt (LSOS) or the D-serine degrading enzyme, D-amino acid oxidase (DAAO) on post-operative days 0-3 significantly reduced the CCI-induced increase in nitric oxide (NO) levels and nicotinamide adenine dinucleotide phosphate-diaphorase staining in lumbar dorsal horn neurons, as well as the CCI-induced decrease in phosphorylation (Ser847) of nNOS (pnNOS) on day 3 post-CCI surgery. LSOS or DAAO administration suppressed the CCI-induced development of mechanical allodynia and protein kinase C (PKC)-dependent (Ser896) phosphorylation of GluN1 on day 3 post-surgery, which were reversed by the co-administration of the NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1). In naïve mice, exogenous D-serine increased NO levels via decreases in pnNOS. D-serine-induced increases in mechanical hypersensitivity, NO levels, PKC-dependent pGluN1, and NMDA-induced spontaneous nociception were reduced by pretreatment with the nNOS inhibitor, 7-nitroindazole or with the NMDA receptor antagonists, 7-chlorokynurenic acid and MK-801. Collectively, we show that spinal D-serine modulates nNOS activity and concomitant NO production leading to increases in PKC-dependent pGluN1 and ultimately contributing to the induction of mechanical allodynia following peripheral nerve injury.


Assuntos
Astrócitos/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Serina/farmacologia , Animais , Western Blotting , D-Aminoácido Oxidase/metabolismo , Hiperalgesia/etiologia , Masculino , Camundongos , Molsidomina/análogos & derivados , Molsidomina/farmacologia , N-Metilaspartato/metabolismo , Neuralgia/etiologia , Fosforilação/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/análogos & derivados , Serina/metabolismo
3.
Biol Pharm Bull ; 41(2): 172-181, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187670

RESUMO

Despite the relatively high prevalence of migraine or headache, the pathophysiological mechanisms triggering headache-associated peripheral hypersensitivities, are unknown. Since nitric oxide (NO) is well known as a causative factor in the pathogenesis of migraine or migraine-associated hypersensitivities, a mouse model has been established using systemic administration of the NO donor, nitroglycerin (NTG). Here we tried to investigate the time course development of facial or hindpaw hypersensitivity after repetitive NTG injection. NTG (10 mg/kg) was administrated to mice every other day for nine days. Two hours post-injection, NTG produced acute mechanical and heat hypersensitivity in the hind paws. By contrast, cold allodynia, but not mechanical hypersensitivity, occurred in the facial region. Moreover, this hindpaws mechanical hypersensitivity and the facial cold allodynia was progressive and long-lasting. We subsequently examined whether the depletion of capsaicin-sensitive primary afferents (CSPAs) with resiniferatoxin (RTX, 0.02 mg/kg) altered these peripheral hypersensitivities in NTG-treated mice. RTX pretreatment did not affect the NTG-induced mechanical allodynia in the hind paws nor the cold allodynia in the facial region, but it did inhibit the development of hind paw heat hyperalgesia. Similarly, NTG injection produced significant hindpaw mechanical allodynia or facial cold allodynia, but not heat hyperalgesia in transient receptor potential type V1 (TRPV1) knockout mice. These findings demonstrate that different peripheral hypersensitivities develop in the face versus hindpaw regions in a mouse model of repetitive NTG-induced migraine, and that these hindpaw mechanical hypersensitivity and facial cold allodynia are not mediated by the activation of CSPAs.


Assuntos
Doenças do Nervo Facial/fisiopatologia , Hiperalgesia/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/fisiopatologia , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/farmacologia , Temperatura Baixa/efeitos adversos , Diterpenos/toxicidade , Resistência a Medicamentos , Doenças do Nervo Facial/induzido quimicamente , Doenças do Nervo Facial/metabolismo , Doenças do Nervo Facial/patologia , Membro Posterior , Temperatura Alta/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/patologia , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Neurotoxinas/toxicidade , Doadores de Óxido Nítrico/toxicidade , Nitroglicerina/toxicidade , Especificidade de Órgãos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
4.
Mol Pain ; 13: 1744806916688902, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28326932

RESUMO

Background Self-injurious behaviors (SIBs) are devastating traits in autism spectrum disorder (ASD). Although deficits in pain sensation might be one of the contributing factors underlying the development of SIBs, the mechanisms have yet to be addressed. Recently, the Shank2 synaptic protein has been considered to be a key component in ASD, and mutations of SHANK2 gene induce the dysfunction of N-methyl-D-aspartate (NMDA) receptors, suggesting a link between Shank2 and NMDA receptors in ASD. Given that spinal NMDA receptors play a pivotal role in pain hypersensitivity, we investigated the possible role of Shank2 in nociceptive hypersensitivity by examining changes in spontaneous pain following intrathecal NMDA injection in S hank2-/- ( Shank2 knock-out, KO) mice. Results Intrathecal NMDA injection evoked spontaneous nociceptive behaviors. These NMDA-induced nociceptive responses were significantly reduced in Shank2 KO mice. We also observed a significant decrease of NMDA currents in the spinal dorsal horn of Shank2 KO mice. Subsequently, we examined whether mitogen-activated protein kinase or AKT signaling is involved in this reduced pain behavior in Shank2 KO mice because the NMDA receptor is closely related to these signaling molecules. Western blotting and immunohistochemistry revealed that spinally administered NMDA increased the expression of a phosphorylated form of extracellular signal-regulated kinase (p-ERK) which was significantly reduced in Shank2 KO mice. However, p38, JNK, or AKT were not changed by NMDA administration. The ERK inhibitor, PD98059, decreased NMDA-induced spontaneous pain behaviors in a dose-dependent manner in wild-type mice. Moreover, it was found that the NMDA-induced increase in p-ERK was primarily colocalized with Shank2 proteins in the spinal cord dorsal horn. Conclusion Shank2 protein is involved in spinal NMDA receptor-mediated pain, and mutations of Shank2 may suppress NMDA-ERK signaling in spinal pain transmission. This study provides new clues into the mechanisms underlying pain deficits associated with SIB and deserves further study in patients with ASD.


Assuntos
Hiperalgesia/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Nociceptividade/efeitos dos fármacos , Dor/patologia , Medula Espinal/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Flavonoides/farmacologia , Hiperalgesia/induzido quimicamente , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/toxicidade , Proteínas do Tecido Nervoso/genética , Dor/induzido quimicamente , Medição da Dor , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Medula Espinal/efeitos dos fármacos
5.
Int J Cancer ; 138(10): 2466-76, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26704560

RESUMO

Cancer chemotherapy with platinum-based antineoplastic agents including oxaliplatin frequently results in a debilitating and painful peripheral neuropathy. We evaluated the antinociceptive effects of the alpha-2 adrenoceptor agonist, clonidine on oxaliplatin-induced neuropathic pain. Specifically, we determined if (i) the intraperitoneal (i.p.) injection of clonidine reduces mechanical allodynia in mice with an oxaliplatin-induced neuropathy and (ii) concurrent inhibition of p38 mitogen-activated protein kinase (MAPK) activity by the p38 MAPK inhibitor SB203580 enhances clonidine's antiallodynic effect. Clonidine (0.01-0.1 mg kg(-1), i.p.), with or without SB203580(1-10 nmol, intrathecal) was administered two weeks after oxaliplatin injection(10 mg kg(-1), i.p.) to mice. Mechanical withdrawal threshold, motor coordination and blood pressure were measured. Postmortem expression of p38 MAPK and ERK as well as their phosphorylated forms(p-p38 and p-ERK) were quantified 30 min or 4 hr after drug injection in the spinal cord dorsal horn of treated and control mice. Clonidine dose-dependently reduced oxaliplatin-induced mechanical allodynia and spinal p-p38 MAPK expression, but not p-ERK. At 0.1 mg kg(-1), clonidine also impaired motor coordination and decreased blood pressure. A 10 nmol dose of SB203580 alone significantly reduced mechanical allodynia and p-p38 MAPK expression, while a subeffective dose(3 nmol) potentiated the antiallodynic effect of 0.03 mg kg(-1) clonidine and reduced the increased p-p38 MAPK. Coadministration of SB203580 and 0.03 mg kg(-1) clonidine decreased allodynia similar to that of 0.10 mg kg(-1) clonidine, but without significant motor or vascular effects. These findings demonstrate that clonidine treatment reduces oxaliplatin-induced mechanical allodynia. The concurrent administration of SB203580 reduces the dosage requirements for clonidine, thereby alleviating allodynia without producing undesirable motor or cardiovascular effects.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antineoplásicos/efeitos adversos , Clonidina/farmacologia , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Compostos Organoplatínicos/efeitos adversos , Animais , Pressão Sanguínea/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/diagnóstico , Hiperalgesia/tratamento farmacológico , Imidazóis/farmacologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Oxaliplatina , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Pharmacol Res ; 100: 353-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26316425

RESUMO

We have previously demonstrated that activation of the spinal sigma-1 receptor (Sig-1R) plays an important role in the development of mechanical allodynia (MA) via secondary activation of the N-methyl-d-aspartate (NMDA) receptor. Sig-1Rs have been shown to localize to astrocytes, and blockade of Sig-1Rs inhibits the pathologic activation of astrocytes in neuropathic mice. However, the mechanism by which Sig-1R activation in astrocytes modulates NMDA receptors in neurons is currently unknown. d-serine, synthesized from l-serine by serine racemase (Srr) in astrocytes, is an endogenous co-agonist for the NMDA receptor glycine site and can control NMDA receptor activity. Here, we investigated the role of d-serine in the development of MA induced by spinal Sig-1R activation in chronic constriction injury (CCI) mice. The production of d-serine and Srr expression were both significantly increased in the spinal cord dorsal horn post-CCI surgery. Srr and d-serine were only localized to astrocytes in the superficial dorsal horn, while d-serine was also localized to neurons in the deep dorsal horn. Moreover, we found that Srr exists in astrocytes that express Sig-1Rs. The CCI-induced increase in the levels of d-serine and Srr was attenuated by sustained intrathecal treatment with the Sig-1R antagonist, BD-1047 during the induction phase of neuropathic pain. In behavioral experiments, degradation of endogenous d-serine with DAAO, or selective blockade of Srr by LSOS, effectively reduced the development of MA, but not thermal hyperalgesia in CCI mice. Finally, BD-1047 administration inhibited the development of MA and this inhibition was reversed by intrathecal treatment with exogenous d-serine. These findings demonstrate for the first time that the activation of Sig-1Rs increases the expression of Srr and d-serine in astrocytes. The increased production of d-serine induced by CCI ultimately affects dorsal horn neurons that are involved in the development of MA in neuropathic mice.


Assuntos
Astrócitos/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores sigma/metabolismo , Serina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Etilenodiaminas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células do Corno Posterior/metabolismo , Racemases e Epimerases/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Receptor Sigma-1
7.
Anesth Analg ; 120(3): 671-677, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25695583

RESUMO

BACKGROUND: The regulator of G-protein signaling protein type 4 (RGS4) accelerates the guanosine triphosphatase activity of G(αi) and G(αo), resulting in the inactivation of G-protein-coupled receptor signaling. An opioid receptor (OR), a G(αi)-coupled receptor, plays an important role in pain modulation in the central nervous system. In this study, we examined whether (1) spinal RGS4 affected nociceptive responses in the formalin pain test, (2) this RGS4-mediated effect was involved in OR activation, and (3) the µ-OR agonist-induced antinociceptive effect was modified by RGS4 modulation. METHODS: Formalin (1%, 20 µL) was injected subcutaneously into the right hindpaws of male 129S4/SvJae×C57BL/6J (RGS4(+/+) or RGS4(-/-)) mice, and the licking responses were counted for 40 minutes. The time periods (seconds) spent licking the injected paw during 0 to 10 minutes (early phase) and 10 to 40 minutes (late phase) were measured as indicators of acute nociception and inflammatory pain response, respectively. An RGS4 inhibitor, CCG50014, and/or a µ-OR agonist, [D-Ala², N-MePhe4, Gly-ol]-enkephalin (DAMGO), were intrathecally injected 5 minutes before the formalin injection. A nonselective OR antagonist, naloxone, was intraperitoneally injected 30 minutes before the CCG50014 injection. RESULTS: Mice that received the formalin injection exhibited typical biphasic nociceptive behaviors. The nociceptive responses in RGS4-knockout mice were significantly decreased during the late phase but not during the early phase. Similarly, intrathecally administered CCG50014 (10, 30, or 100 nmol) attenuated the nociceptive responses during the late phase in a dose-dependent manner. The antinociceptive effect of the RGS4 inhibitor was totally blocked by naloxone (5 mg/kg). In contrast, intrathecal injection of DAMGO achieved a dose-dependent reduction of the nociceptive responses at the early and late phases. This analgesic effect of DAMGO was significantly enhanced by the genetic depletion of RGS4 or by coadministration of CCG50014 (10 nmol). CONCLUSIONS: These findings demonstrated that spinal RGS4 inhibited the endogenous or exogenous OR-mediated antinociceptive effect in the formalin pain test. Thus, the inhibition of RGS4 activity can enhance OR agonist-induced analgesia. The enhancement of OR agonist-induced analgesia by coadministration of the RGS4 inhibitor suggests a new therapeutic strategy for the management of inflammatory pain.


Assuntos
Analgésicos Opioides/farmacologia , Analgésicos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Formaldeído , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/prevenção & controle , Proteínas RGS/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Tiazolidinedionas/administração & dosagem , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Injeções Espinhais , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Entorpecentes/farmacologia , Dor Nociceptiva/genética , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Dor Nociceptiva/psicologia , Medição da Dor , Proteínas RGS/deficiência , Proteínas RGS/genética , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Fatores de Tempo
8.
Biol Pharm Bull ; 38(9): 1320-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26328487

RESUMO

Although the administration of clonidine, an alpha-2 adrenoceptor agonist, significantly attenuates nociception and hyperalgesia in several pain models, clinical trials of clonidine are limited by its side effects such as drowsiness, hypotension and sedation. Recently, we determined that the sigma-1 receptor antagonist BD1047 dose-dependently reduced nociceptive responses in a mouse orofacial formalin model. Here we examined whether intraperitoneal injection of clonidine suppressed the nociceptive responses in the orofacial formalin test, and whether co-administration with BD1047 enhances lower-dose clonidine-induced anti-nociceptive effects without the disruption of motor coordination and blood pressure. Formalin (5%, 10 µL) was subcutaneously injected into the right upper lip, and the rubbing responses with the ipsilateral fore- or hind-paw were counted for 45 min. Clonidine (10, 30 or 100 µg/kg) was intraperitoneally administered 30 min before formalin injection. Clonidine alone dose-dependently reduced nociceptive responses in both the first and second phases. Co-localization for alpha-2A adrenoceptors and sigma-1 receptors was determined in trigeminal ganglion cells. Interestingly, the sub-effective dose of BD1047 (3 mg/kg) significantly potentiated the anti-nociceptive effect of lower-dose clonidine (10 or 30 µg/kg) in the second phase. In particular, the middle dose of clonidine (30 µg/kg) in combination with BD1047 produced an anti-nociceptive effect similar to that of the high-dose clonidine, but without a significant motor dysfunction or hypotension. In contrast, mice treated with the high dose of clonidine developed severe impairment in motor coordination and blood pressure. These data suggest that a combination of low-dose clonidine with BD1047 may be a novel and safe therapeutic strategy for orofacial pain management.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Analgésicos/uso terapêutico , Clonidina/uso terapêutico , Etilenodiaminas/uso terapêutico , Dor Facial/tratamento farmacológico , Receptores sigma/antagonistas & inibidores , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Dor Facial/induzido quimicamente , Formaldeído , Masculino , Camundongos Endogâmicos C57BL , Medição da Dor , Desempenho Psicomotor/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Receptor Sigma-1
9.
Mol Pain ; 10: 2, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24401144

RESUMO

BACKGROUND: We previously developed a thrombus-induced ischemic pain (TIIP) animal model, which was characterized by chronic bilateral mechanical allodynia without thermal hyperalgesia (TH). On the other hand we had shown that intraplantar injection of acidic saline facilitated ATP-induced pain, which did result in the induction of TH in normal rats. Because acidic pH and increased ATP are closely associated with ischemic conditions, this study is designed to: (1) examine whether acidic saline injection into the hind paw causes the development of TH in TIIP, but not control, animals; and (2) determine which peripheral mechanisms are involved in the development of this TH. RESULTS: Repeated intraplantar injection of pH 4.0 saline, but not pH 5.5 and 7.0 saline, for 3 days following TIIP surgery resulted in the development of TH. After pH 4.0 saline injections, protein levels of hypoxia inducible factor-1α (HIF-1α) and carbonic anhydrase II (CA II) were elevated in the plantar muscle indicating that acidic stimulation intensified ischemic insults with decreased tissue acidity. At the same time point, there were no changes in the expression of TRPV1 in hind paw skin, whereas a significant increase in TRPV1 phosphorylation (pTRPV1) was shown in acidic saline (pH 4.0) injected TIIP (AS-TIIP) animals. Moreover, intraplantar injection of chelerythrine (a PKC inhibitor) and AMG9810 (a TRPV1 antagonist) effectively alleviated the established TH. In order to investigate which proton- or ATP-sensing receptors contributed to the development of TH, amiloride (an ASICs blocker), AMG9810, TNP-ATP (a P2Xs antagonist) or MRS2179 (a P2Y1 antagonist) were pre-injected before the pH 4.0 saline. Only MRS2179 significantly prevented the induction of TH, and the increased pTRPV1 ratio was also blocked in MRS2179 injected animals. CONCLUSION: Collectively these data show that maintenance of an acidic environment in the ischemic hind paw of TIIP rats results in the phosphorylation of TRPV1 receptors via a PKC-dependent pathway, which leads to the development of TH mimicking what occurs in chronic ischemic patients with severe acidosis. More importantly, peripheral P2Y1 receptors play a pivotal role in this process, suggesting a novel peripheral mechanism underlying the development of TH in these patients.


Assuntos
Membro Posterior/irrigação sanguínea , Hiperalgesia/complicações , Isquemia/etiologia , Dor/etiologia , Receptores Purinérgicos P2Y1/metabolismo , Canais de Cátion TRPV/metabolismo , Trombose/complicações , Ácidos , Acrilamidas/farmacologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Benzofenantridinas/farmacologia , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Diterpenos/farmacologia , Membro Posterior/patologia , Temperatura Alta , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Hipóxia/etiologia , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções , Canais Iônicos/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Dor/metabolismo , Dor/patologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/farmacologia , Trombose/metabolismo , Trombose/patologia , Extratos de Tecidos
10.
Biol Pharm Bull ; 37(1): 145-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24152609

RESUMO

Sigma-1 receptors (Sig-1Rs) play a role in different types of pain and in central sensitization mechanism in spinal cord. However, it is currently unexplored whether Sig-1Rs are involved in orofacial pain processing. Here we show whether a selective Sig-1R antagonist, BD1047 reduces nociceptive responses in the mouse orofacial formalin model and the number of Fos-immunoreactive (ir) cells in the trigeminal nucleus caudalis (TNC). In addition, it was examined whether the phosphorylation of extracellular signal-regulated kinase (pERK) or p38 (pp38) mitogen-activated protein kinases (MAPK), which are closely linked to pain signaling and sensitization, in TNC was modified by BD1047. The 5% formalin (10 µL) was subcutaneously injected into the right upper lip, and the rubbing responses with ipsilateral fore- or hind paw were counted for 45 min. BD1047 (1, 3 or 10 mg/kg) were intraperitoneally treated 30 min before formalin injection. High dose of BD1047 (10 mg/kg) produced significant anti-nociceptive effects in the first and the second phase. The number of Fos-ir cells in ipsilateral side of TNC was also reduced by BD1047 as compared to that in saline-treated animals. In addition, the number of pp38-ir cells in ipsilateral TNC was decreased in BD1047-treated animals, whereas the number of pERK-ir cells was not modified. Collectively, these results demonstrate that Sig-1Rs play a pivotal role in the orofacial pain processing, and the pp38 signaling pathway can be associated with Sig-1R's action in TNC.


Assuntos
Analgésicos/farmacologia , Etilenodiaminas/farmacologia , Dor Facial/metabolismo , Lábio , Receptores sigma/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Etilenodiaminas/uso terapêutico , Dor Facial/induzido quimicamente , Dor Facial/tratamento farmacológico , Formaldeído , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Receptor Sigma-1
11.
Pharmacol Res ; 74: 56-67, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23732704

RESUMO

We have recently demonstrated that spinal sigma-1 receptors (Sig-1Rs) mediate pain hypersensitivity in mice and neuropathic pain in rats. In this study, we examine the role of NADPH oxidase 2 (Nox2)-induced reactive oxygen species (ROS) on Sig-1R-induced pain hypersensitivity and the induction of chronic neuropathic pain. Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in rats. Mechanical allodynia and thermal hyperalgesia were evaluated in mice and CCI-rats. Western blotting and dihydroethidium (DHE) staining were performed to assess the changes in Nox2 activation and ROS production in spinal cord, respectively. Direct activation of spinal Sig-1Rs with the Sig-1R agonist, PRE084 induced mechanical allodynia and thermal hyperalgesia, which were dose-dependently attenuated by pretreatment with the ROS scavenger, NAC or the Nox inhibitor, apocynin. PRE084 also induced an increase in Nox2 activation and ROS production, which were attenuated by pretreatment with the Sig-1R antagonist, BD1047 or apocynin. CCI-induced nerve injury produced an increase in Nox2 activation and ROS production in the spinal cord, all of which were attenuated by intrathecal administration with BD1047 during the induction phase of neuropathic pain. Furthermore, administration with BD1047 or apocynin reversed CCI-induced mechanical allodynia during the induction phase, but not the maintenance phase. These findings demonstrate that spinal Sig-1Rs modulate Nox2 activation and ROS production in the spinal cord, and ultimately contribute to the Sig-1R-induced pain hypersensitivity and the peripheral nerve injury-induced induction of chronic neuropathic pain.


Assuntos
Hiperalgesia/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Neuralgia/metabolismo , Receptores sigma/metabolismo , Animais , Etilenodiaminas/farmacologia , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/farmacologia , NADPH Oxidase 2 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Medula Espinal/metabolismo , Tato , Receptor Sigma-1
12.
Biol Pharm Bull ; 36(11): 1787-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23985901

RESUMO

Oxaliplatin, which is used as one of anti-cancer drugs, commonly induces peripheral neuropathic pain. We have previously reported that an injection of diluted bee venom (DBV) produced a significant anti-nociceptive effects in several pain models of mice or rats. In this study, we evaluated time- and dose-dependent development of oxaliplatin-induced mechanical allodynia in bilateral hind paws of mice, and investigated the effect of DBV injection on this mechanical allodynia. DBV (0.1 mg/kg) was subcutaneously injected into the Zusanli acupoint 2 weeks after oxaliplatin (10 mg/kg) injection. One hour after DBV injection, we observed a significant reduction of mechanical allodynia in the ipsilateral hind paw, but not in the contralateral hind paw to DBV injection site. We subsequently examined whether this effect of DBV was related to the activation of peripheral nerves in DBV injected site, and then whether it was mediated by the activation of spinal cord alpha-2 adrenoceptors or opioid receptors. Subcutaneous pre-injection of 2% lidocaine (40 mg/kg) into the Zusanli acupoint completely blocked the anti-allodynic effect of DBV. Intrathecal pretreatment with yohimbine (25 µg/mouse), an alpha-2 adrenoceptor antagonist, also prevented the anti-allodynic effect of DBV, whereas pretreatment with naloxone (20 µg/mouse), an opioid receptor antagonist, did not block the effect of DBV. Taken together, these findings demonstrate that DBV injection into the Zusanli acupoint significantly reduces ipsilateral mechanical allodynia generated by oxaliplatin in mice, and also suggest that this anti-allodynic effect is dependent on the peripheral nerve activation in injected site and spinal cord alpha-2 adrenoceptors.


Assuntos
Analgésicos/uso terapêutico , Venenos de Abelha/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Injeções , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente , Compostos Organoplatínicos/efeitos adversos , Oxaliplatina , Receptores Adrenérgicos alfa 2/fisiologia , Ioimbina/farmacologia
13.
Front Mol Neurosci ; 16: 1172366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122619

RESUMO

Neuropathic pain caused by trigeminal nerve injury is a typical refractory orofacial chronic pain accompanied by the development of hyperalgesia and allodynia. We previously demonstrated that the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed orofacial formalin injection-induced nociception; however, the underlying mechanism is unclear, and it is unknown whether it can reduce trigeminal neuropathic pain. In mice, left infraorbital nerve and partial nerve ligation (ION-pNL) was performed using a silk suture (8-0). Fourteen days after surgery, neuropathic pain behavior was examined on a whisker pad and rapamycin (0.1, 0.3, and 1.0 mg/kg) was administered intraperitoneally. Mechanical and cold sensitivities in the orofacial region were quantified using von Frey filaments and acetone solution, respectively. Changes in mTOR and related proteins, such as p-MKK3/6, p-MKK4, p-JNK, p-ERK, p-p38 MAPK, GFAP, and Iba-1, in the trigeminal nucleus caudalis (TNC) or the trigeminal ganglia (TG) tissues were examined via western blot analysis or immunohistochemistry. Mice demonstrated significant mechanical and cold allodynia 2 weeks following ION-pNL injury, both of which were significantly reduced 1 h after the administration of high-dose rapamycin (1.0 mg/kg). In the TG tissue, ION-pNL surgery or rapamycin treatment did not change p-mTOR and p-4EBP1, but rapamycin reduced the increase of p-S6 and S6 induced by ION-pNL. In the TNC tissue, neither ION-pNL surgery nor rapamycin treatment altered p-mTOR, p-S6, and p-4EBP1 expressions, whereas rapamycin significantly decreased the ION-pNL-induced increase in Iba-1 expression. In addition, rapamycin suppressed the increase in p-p38 MAPK and p-MKK4 expressions but not p-MKK3/6 expression. Moreover, p-p38 MAPK-positive cells were colocalized with increased Iba-1 in the TNC. Our findings indicate that rapamycin treatment reduces both mechanical and cold orofacial allodynia in mice with trigeminal neuropathic pain, which is closely associated with the modulation of p-MKK4/p-p38 MAPK-mediated microglial activation in the TNC.

14.
Jpn Dent Sci Rev ; 59: 253-262, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37674900

RESUMO

Metagenomics and metatranscriptomics have enhanced our understanding of the oral microbiome and its impact on oral health. However, these approaches have inherent limitations in exploring individual cells and the heterogeneity within mixed microbial communities, which restricts our current understanding to bulk cells and species-level information. Fortunately, recent technical advances have enabled the application of single-cell RNA sequencing (scRNA-seq) for studying bacteria, shedding light on cell-to-cell diversity and interactions between host-bacterial cells at the single-cell level. Here, we address the technical barriers in capturing RNA from single bacterial cells and highlight pioneering studies from the past decade. We also discuss recent achievements in host-bacterial dual transcriptional profiling at the single-cell level. Bacterial scRNA-seq provides advantages in various research fields, including the investigation of phenotypic heterogeneity within genetically identical bacteria, identification of rare cell types, detection of antibiotic-resistant or persistent cells, analysis of individual gene expression patterns and metabolic activities, and characterization of specific microbe-host interactions. Integrating single-cell techniques with bulk approaches is essential to gain a comprehensive understanding of oral diseases and develop targeted and personalized treatment in dentistry. The reviewed pioneering studies are expected to inspire future research on the oral microbiome at the single-cell level.

15.
Integr Med Res ; 12(4): 100999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953754

RESUMO

Background: Peripheral hypersensitivities develop in the face and hindpaws of mice with nitroglycerin (NTG)-induced migraine. We evaluated whether diluted bee venom (DBV) injections at acupoints prevented these peripheral hypersensitivities and c-Fos expression in the trigeminal nucleus caudalis (TNC). Methods: NTG (10 mg/kg, intraperitoneal, i.p.) was administered every other day for nine days. DBV (0.1 mg/kg) was subcutaneously injected into the ST36 (Zusanli), LI4 (Hegu), or GV16 (Fengfu) acupoints 75 min after each NTG injection. Mice were pretreated with naloxone (5 mg/kg, i.p.) or yohimbine (5 mg/kg, i.p.) 30 min before the DBV injections. Results: NTG injection caused facial cold allodynia, hindpaw mechanical allodynia, and increased c-Fos-immunoreactive (ir) cells in the TNC. Repetitive DBV injections at GV16, but not the ST36, or LI4 acupoints, suppressed NTG-induced hindpaw mechanical allodynia and facial cold allodynia. The number of c-Fos-ir cells also decreased in response to DBV injections at the GV16 acupoint. Remarkably, pretreatment with yohimbine reversed the anti-allodynic effects of DBV injections and attenuated the decreased c-Fos expression in response to GV16 DBV treatment. Naloxone did not block the effects of GV16 DBV stimulation. Conclusion: These findings demonstrate that repetitive DBV treatment at the GV16 acupoint relieves NTG-induced facial and hindpaw hypersensitivities and decreases in c-Fos expression in the TNC via activation of the alpha-2 adrenoceptors, but not the opioid receptors.

16.
Front Pharmacol ; 14: 1253901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152690

RESUMO

Progesterone has been shown to have neuroprotective capabilities against a wide range of nervous system injuries, however there are negative clinical studies that have failed to demonstrate positive effects of progesterone therapy. Specifically, we looked into whether progesterone receptors or its metabolizing enzymes, cytochrome P450c17 and 5α-reductase, are involved in the effects of progesterone on neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve in mice. Intrathecal progesterone administration during the induction phase of chronic pain enhanced mechanical allodynia development and spinal glial fibrillary acidic protein (GFAP) expression, and this enhancement was inhibited by administration of ketoconazole, a P450c17 inhibitor, but not finasteride, a 5α-reductase inhibitor. Furthermore, phospho-serine levels of P450c17 in the spinal cord were elevated on day 1 after CCI operation, but not on day 17. In contrast, intrathecal progesterone administration during the maintenance phase of chronic pain decreased the acquired pain and elevated GFAP expression; this inhibition was restored by finasteride administration, but not by ketoconazole. The modification of mechanical allodynia brought on by progesterone in CCI mice was unaffected by the administration of mifepristone, a progesterone receptor antagonist. Collectively, these findings imply that progesterone suppresses spinal astrocyte activation via 5α-reductase activity during the maintenance phase of chronic pain and has an analgesic impact on the mechanical allodynia associated with the growing neuropathy. Progesterone, however, stimulates spinal astrocytes during the induction stage of peripheral neuropathy and boosts the allodynic impact caused by CCI through early spinal P450c17 activation.

17.
Sci Rep ; 13(1): 20245, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985842

RESUMO

It has been suggested that stress responses induced by fasting have analgesic effects on nociception by elevating the levels of stress-related hormones, while there is limited understanding of pain control mechanisms. Here, we investigated whether acute or intermittent fasting alleviates formalin-induced pain in mice and whether spinal orexin A (OXA) plays a role in this process. 6, 12, or 24 h acute fasting (AF) and 12 or 24 h intermittent fasting (IF) decreased the second phase of pain after intraplantar formalin administration. There was no difference in walking time in the rota-rod test and distance traveld in the open field test in all groups. Plasma corticosterone level and immobility time in the forced swim test were increased after 12 h AF, but not after 12 h IF. 12 h AF and IF increased not only the activation of OXA neurons in the lateral hypothalamus but also the expression of OXA in the lateral hypothalamus and spinal cord. Blockade of spinal orexin 1 receptor with SB334867 restored formalin-induced pain and spinal c-Fos immunoreactivity that were decreased after 12 h IF. These results suggest that 12 h IF produces antinociceptive effects on formalin-induced pain not by corticosterone elevation but by OXA-mediated pathway.


Assuntos
Dor Aguda , Camundongos , Animais , Orexinas/farmacologia , Formaldeído/toxicidade , Jejum Intermitente , Corticosterona/farmacologia , Analgésicos/farmacologia , Medula Espinal/metabolismo , Receptores de Orexina/metabolismo
18.
Anesth Analg ; 114(1): 215-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22127815

RESUMO

BACKGROUND: It has been reported that the selective blockade of Nav1.8 sodium channels could be a possible target for the development of analgesics without unwanted side effects. However, the precise role of spinal Nav1.8 in the induction and maintenance of persistent pain, e.g., mechanical allodynia (MA) and thermal hyperalgesia (TH), is not clear. We designed this study to investigate whether spinal Nav1.8 contributes to capsaicin-induced and peripheral ischemia-induced MA and TH. METHODS: The Nav1.8 blockers, A-803467 or ambroxol, were injected intrathecally either before or after intraplantar capsaicin injection. To evaluate capsaicin-induced neuronal activation in the spinal cord, we quantified the number of Fos-immunoreactive cells in the dorsal horn. In the thrombus-induced ischemic pain model, we determined the differential effect of A-803467 on the induction phase or maintenance phase of MA. RESULTS: Intrathecal injection of A-803467 (10, 30, 100 nmol) or ambroxol (241, 724, 2410 nmol) before intraplantar injection of capsaicin dose dependently prevented the induction of both MA and TH. However, posttreatment with A-803467 (100 nmol) and ambroxol (2410 nmol) did not reduce the MA that had already developed, but did significantly suppress capsaicin-induced TH. Moreover, the capsaicin-induced increase of spinal Fos-immunoreactive cells was significantly diminished by pretreatment, but not posttreatment with Nav1.8 blockers. In thrombus-induced ischemic pain rats, repetitive treatments of A-803467 during the induction period also prevented the development of MA, whereas A-803467 treatments during the maintenance period were ineffective in preventing or reducing MA. CONCLUSIONS: These results demonstrate that spinal activation of Nav1.8 mediates the early induction of MA, but not the maintenance of MA. However, both the induction and maintenance of TH are modulated by the intrathecal injection of Nav1.8 blockers. These findings suggest that early treatment with a Nav1.8 blocker can be an important factor in the clinical management of chronic MA associated with inflammatory and ischemic pain.


Assuntos
Ambroxol/administração & dosagem , Compostos de Anilina/administração & dosagem , Capsaicina , Furanos/administração & dosagem , Hiperalgesia/etiologia , Isquemia/complicações , Dor/etiologia , Bloqueadores dos Canais de Sódio/administração & dosagem , Canais de Sódio/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Temperatura Alta , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Injeções Espinhais , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Canal de Sódio Disparado por Voltagem NAV1.8 , Dor/induzido quimicamente , Dor/metabolismo , Dor/fisiopatologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Fatores de Tempo
19.
Artigo em Inglês | MEDLINE | ID: mdl-22969830

RESUMO

Cold allodynia is an important distinctive feature of neuropathic pain. The present study examined whether single or repetitive treatment of diluted bee venom (DBV) reduced cold allodynia in sciatic nerve chronic constriction injury (CCI) rats and whether these effects were mediated by spinal adrenergic receptors. Single injection of DBV (0.25 or 2.5 mg/kg) was performed into Zusanli acupoint 2 weeks post CCI, and repetitive DBV (0.25 mg/kg) was injected for 2 weeks beginning on day 15 after CCI surgery. Single treatment of DBV at a low dose (0.25 mg/kg) did not produce any anticold allodynic effect, while a high dose of DBV (2.5 mg/kg) significantly reduced cold allodynia. Moreover, this effect of high-dose DBV was completely blocked by intrathecal pretreatment of idazoxan (α2-adrenoceptor antagonist), but not prazosin (α1-adrenoceptor antagonist) or propranolol (nonselective ß-adrenoceptor antagonist). In addition, coadministration of low-dose DBV (0.25 mg/kg) and intrathecal clonidine (α2-adrenoceptor agonist) synergically reduced cold allodynia. On the other hand, repetitive treatments of low-dose DBV showing no motor deficit remarkably suppressed cold allodynia from 7 days after DBV treatment. This effect was also reversed by intrathecal idazoxan injection. These findings demonstrated that single or repetitive stimulation of DBV could alleviate CCI-induced cold allodynia via activation of spinal α2-adrenoceptor.

20.
Korean J Physiol Pharmacol ; 16(6): 387-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23269900

RESUMO

In this study, we examined the antinociceptive effect of Cyperi rhizoma (CR) and Corydalis tuber (CT) extracts using a chronic constriction injury-induced neuropathic pain rat model. After the ligation of sciatic nerve, neuropathic pain behavior such as mechanical allodynia and thermal hyperalgesia were rapidly induced and maintained for 1 month. Repeated treatment of CR or CT (per oral, 10 or 30 mg/kg, twice a day) was performed either in induction (day 0~5) or maintenance (day 14~19) period of neuropathic pain state. Treatment of CR or CT at doses of 30 mg/kg in the induction and maintenance periods significantly decreased the nerve injury-induced mechanical allodynia. In addition, CR and CT at doses of 10 or 30 mg/kg alleviated thermal heat hyperalgesia when they were treated in the maintenance period. Finally, CR or CT (30 mg/kg) treated during the induction period remarkably reduced the nerve injury-induced phosphorylation of NMDA receptor NR1 subunit (pNR1) in the spinal dorsal horn. Results of this study suggest that extracts from CR and CT may be useful to alleviate neuropathic pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA