Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 121(4): 575-581, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032457

RESUMO

The synovium is a multilayer connective tissue separating the intra-articular spaces of the diarthrodial joint from the extra-synovial vascular and lymphatic supply. Synovium regulates drug transport into and out of the joint, yet its material properties remain poorly characterized. Here, we measured the compressive properties (aggregate modulus, Young's modulus, and Poisson's ratio) and hydraulic permeability of synovium with a combined experimental-computational approach. A compressive aggregate modulus and Young's modulus for the solid phase of synovium were quantified from linear regression of the equilibrium confined and unconfined compressive stress upon strain, respectively (HA = 4.3 ± 2.0 kPa, Es = 2.1 ± 0.75, porcine; HA = 3.1 ± 2.0 kPa, Es = 2.8 ± 1.7, human). Poisson's ratio was estimated to be 0.39 and 0.40 for porcine and human tissue, respectively, from moduli values in a Monte Carlo simulation. To calculate hydraulic permeability, a biphasic finite element model's predictions were numerically matched to experimental data for the time-varying ramp and hold phase of a single increment of applied strain (k = 7.4 ± 4.1 × 10-15 m4/N.s, porcine; k = 7.4 ± 4.3 × 10-15 m4/N.s, human). We can use these newly measured properties to predict fluid flow gradients across the tissue in response to previously reported intra-articular pressures. These values for material constants are to our knowledge the first available measurements in synovium that are necessary to better understand drug transport in both healthy and pathological joints.


Assuntos
Cartilagem Articular , Animais , Cartilagem Articular/fisiologia , Força Compressiva/fisiologia , Elasticidade , Humanos , Modelos Biológicos , Permeabilidade , Estresse Mecânico , Suínos , Membrana Sinovial
2.
Biophys J ; 120(3): 527-538, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33412143

RESUMO

Random fiber networks constitute the solid skeleton of many biological materials such as the cytoskeleton of cells and extracellular matrix of soft tissues. These random networks show unique mechanical properties such as nonlinear shear strain-stiffening and strain softening when subjected to preextension and precompression, respectively. In this study, we perform numerical simulations to characterize the influence of axial prestress on the nonlinear mechanical response of random network structures as a function of their micromechanical and geometrical properties. We build our numerical network models using the microstructure of disordered hexagonal lattices and quantify their nonlinear shear response as a function of uniaxial prestress strain. We consider three different material models for individual fibers and fully characterize their influence on the mechanical response of prestressed networks. Moreover, we investigate both the influence of geometric disorder keeping the network connectivity constant and the influence of the randomness in the stiffness of individual fibers keeping their mean stiffness constant. The effects of network connectivity and bending rigidity of fibers are also determined. Several important conclusions are made, including that the tensile and compressive prestress strains, respectively, increase and decrease the initial network shear stiffness but have no effect on the maximal shear modulus. We discuss the findings in terms of microstructural properties such as the local strain energy distribution.


Assuntos
Citoesqueleto , Matriz Extracelular , Estresse Mecânico
3.
Soft Matter ; 16(30): 7156-7164, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32671376

RESUMO

Fibrous protein networks provide structural integrity to different biological materials such as soft tissues. These networks display an unusual exponential strain-stiffening behavior when subjected to mechanical loads. This nonlinear strain-stiffening behavior has so far been explained in terms of the network microstructure and the flexibility of constituting fibers. Here, we conduct a comprehensive computational study to characterize the importance of material properties of individual fibers in the overall nonlinear mechanical response of random fiber networks. To this end, we consider three nonlinear material models, ranging from an almost linear form to a highly nonlinear one, for the fibers of subisostatic disordered networks. We characterize the amount of strain-stiffening as a function of bending rigidity of the fibers, the amount of nonlinearity of the fibers, and the connectivity of random networks. We find that networks composed of highly nonlinear fibers exhibit much more strain-stiffening than networks made up of linear fibers. Furthermore, the local strain distribution becomes more homogenous as the amount of nonlinearity in the material models increases. Increasing the network connectivity signifies the importance of the nonlinear material response of individual fibers in the overall mechanical behavior of networks. The constitutive behavior of fibers plays an important role in defining the failure response of networks particularly in the damage initiation and evolution. These important findings for how the mechanical response of individual fibers affects the overall mechanical properties of random networks could find applications in designing new biomimetic materials and could help scientists better understand the mechanical properties of biological materials.

4.
Appl Sci (Basel) ; 12(16)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36451894

RESUMO

Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points. The cells from these IVDs were extracted and transcriptionally profiled at the single-cell resolution. Unsupervised cluster analysis revealed the presence of four known cell types in both non-degenerative and degenerated IVDs based on previously established gene markers: IVD cells, endothelial cells, myeloid cells, and lymphoid cells. As a majority of cells were associated with the IVD cell cluster, sub-clustering was used to further identify the cell populations of the nucleus pulposus, inner and outer annulus fibrosus. The most notable difference between control and degenerated IVDs was the increase of myeloid and lymphoid cells in degenerated samples at two- and eight-weeks post-surgery. Differential gene expression analysis revealed multiple distinct cell types from the myeloid and lymphoid lineages, most notably macrophages and B lymphocytes, and demonstrated a high degree of immune specificity during degeneration. In addition to the heterogenous infiltrating immune cell populations in the degenerating IVD, the increased number of cells in the AF sub-cluster expressing Ngf and Ngfr, encoding for p75NTR, suggest that NGF signaling may be one of the key mediators of the IVD crosstalk between immune and neuronal cell populations. These findings provide the basis for future work to understand the involvement of select subsets of non-resident cells in IVD degeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA