Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Mol Genet ; 24(16): 4636-47, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26019235

RESUMO

Congenital myopathies are genetically and clinically heterogeneous conditions causing severe muscle weakness, and mutations in the ryanodine receptor gene (RYR1) represent the most frequent cause of these conditions. A common feature of diseases caused by recessive RYR1 mutations is a decrease of ryanodine receptor 1 protein content in muscle. The aim of the present investigation was to gain mechanistic insight into the causes of this reduced ryanodine receptor 1. We found that muscle biopsies of patients with recessive RYR1 mutations exhibit decreased expression of muscle-specific microRNAs, increased DNA methylation and increased expression of class II histone deacetylases. Transgenic mouse muscle fibres over-expressing HDAC-4/HDAC-5 exhibited decreased expression of RYR1 and of muscle-specific miRNAs, whereas acute knock-down of RYR1 in mouse muscle fibres by siRNA caused up-regulation of HDAC-4/HDAC-5. Intriguingly, increased class II HDAC expression and decreased ryanodine receptor protein and miRNAs expression were also observed in muscles of patients with nemaline myopathy, another congenital neuromuscular disorder. Our results indicate that a common pathophysiological pathway caused by epigenetic changes is activated in some forms of congenital neuromuscular disorders.


Assuntos
Epigênese Genética , Histona Desacetilases/biossíntese , Debilidade Muscular/metabolismo , Miotonia Congênita/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Animais , Histona Desacetilases/genética , Camundongos , Debilidade Muscular/genética , Debilidade Muscular/patologia , Mutação , Miotonia Congênita/genética , Miotonia Congênita/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
2.
Biochem J ; 455(2): 169-77, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23905709

RESUMO

Excitation-contraction coupling is the physiological mechanism occurring in muscle cells whereby an electrical signal sensed by the dihydropyridine receptor located on the transverse tubules is transformed into a chemical gradient (Ca2+ increase) by activation of the ryanodine receptor located on the sarcoplasmic reticulum membrane. In the present study, we characterized for the first time the excitation-contraction coupling machinery of an immortalized human skeletal muscle cell line. Intracellular Ca2+ measurements showed a normal response to pharmacological activation of the ryanodine receptor, whereas 3D-SIM (super-resolution structured illumination microscopy) revealed a low level of structural organization of ryanodine receptors and dihydropyridine receptors. Interestingly, the expression levels of several transcripts of proteins involved in Ca2+ homoeostasis and differentiation indicate that the cell line has a phenotype closer to that of slow-twitch than fast-twitch muscles. These results point to the potential application of such human muscle-derived cell lines to the study of neuromuscular disorders; in addition, they may serve as a platform for the development of therapeutic strategies aimed at correcting defects in Ca2+ homoeostasis due to mutations in genes involved in Ca2+ regulation.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Fenômenos Eletrofisiológicos , Feminino , Humanos , Contração Muscular , Proteínas Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Adulto Jovem
3.
Hum Mutat ; 34(7): 986-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23553787

RESUMO

In skeletal muscle, excitation-contraction (EC) coupling is the process whereby the voltage-gated dihydropyridine receptor (DHPR) located on the transverse tubules activates calcium release from the sarcoplasmic reticulum by activating ryanodine receptor (RyR1) Ca(2+) channels located on the terminal cisternae. This subcellular membrane specialization is necessary for proper intracellular signaling and any alterations in its architecture may lead to neuromuscular disorders. In this study, we present evidence that patients with recessive RYR1-related congenital myopathies due to primary RyR1 deficiency also exhibit downregulation of the alfa 1 subunit of the DHPR and show disruption of the spatial organization of the EC coupling machinery. We created a cellular RyR1 knockdown model using immortalized human myoblasts transfected with RyR1 siRNA and confirm that knocking down RyR1 concomitantly downregulates not only the DHPR but also the expression of other proteins involved in EC coupling. Unexpectedly, this was paralleled by the upregulation of inositol-1,4,5-triphosphate receptors; functionally however, upregulation of the latter Ca(2+) channels did not compensate for the lack of RyR1-mediated Ca(2+) release. These results indicate that in some patients, RyR1 deficiency concomitantly alters the expression pattern of several proteins involved in calcium homeostasis and that this may influence the manifestation of these diseases.


Assuntos
Acoplamento Excitação-Contração/fisiologia , Músculo Esquelético/metabolismo , Doenças Musculares/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Biópsia , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Doenças Musculares/congênito , Mutação , Mioblastos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Regulação para Cima
4.
PLoS One ; 8(7): e69296, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894444

RESUMO

We describe an autosomal recessive heterogeneous congenital myopathy in a large consanguineous family. The disease is characterized by variable severity, progressive course in 3 of 4 patients, myopathic face without ophthalmoplegia and proximal muscle weakness. Absence of cores was noted in all patients. Genome wide linkage analysis revealed a single locus on chromosome 19q13 with Zmax = 3.86 at θ = 0.0 and homozygosity of the polymorphic markers at this locus in patients. Direct sequencing of the main candidate gene within the candidate region, RYR1, was performed. A novel homozygous A to G nucleotide substitution (p.Y3016C) within exon 60 of the RYR1 gene was found in patients. ARMS PCR was used to screen for the mutation in all available family members and in an additional 150 healthy individuals. This procedure confirmed sequence analysis and did not reveal the A to G mutation (p.Y3016C) in 300 chromosomes from healthy individuals. Functional analysis on EBV immortalized cell lines showed no effect of the mutation on RyR1 pharmacological activation or the content of intracellular Ca(2+) stores. Western blot analysis demonstrated a significant reduction of the RyR1 protein in the patient's muscle concomitant with a reduction of the DHPRα1.1 protein. This novel mutation resulting in RyR1 protein decrease causes heterogeneous clinical presentation, including slow progression course and absence of centrally localized cores on muscle biopsy. We suggest that RYR1 related myopathy should be considered in a wide variety of clinical and pathological presentation in childhood myopathies.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Éxons/genética , Feminino , Ligação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA