Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Am Chem Soc ; 146(29): 19818-19827, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991220

RESUMO

Proton translocation through lipid membranes is a fundamental process in the field of biology. Several theoretical models have been developed and presented over the years to explain the phenomenon, yet the exact mechanism is still not well understood. Here, we show that proton translocation is directly related to membrane potential fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we report apparently universal transmembrane potential fluctuations in lipid membrane systems. Molecular simulations and free energy calculations suggest that H+ permeation proceeds predominantly across a thin, membrane-spanning water needle and that the transient transmembrane potential drives H+ ions across the water needle. This mechanism differs from the transport of other cations that require completely open pores for transport and follows naturally from the well-known Grotthuss mechanism for proton transport in bulk water. Furthermore, SH imaging and conductivity measurements reveal that the rate of proton transport depends on the structure of the hydrophobic core of bilayer membranes.


Assuntos
Bicamadas Lipídicas , Prótons , Água , Água/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular
2.
Nat Mater ; 22(10): 1236-1242, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37652991

RESUMO

Liquids confined down to the atomic scale can show radically new properties. However, only indirect and ensemble measurements operate in such extreme confinement, calling for novel optical approaches that enable direct imaging at the molecular level. Here we harness fluorescence originating from single-photon emitters at the surface of hexagonal boron nitride for molecular imaging and sensing in nanometrically confined liquids. The emission originates from the chemisorption of organic solvent molecules onto native surface defects, revealing single-molecule dynamics at the interface through the spatially correlated activation of neighbouring defects. Emitter spectra further offer a direct readout of the local dielectric properties, unveiling increasing dielectric order under nanometre-scale confinement. Liquid-activated native hexagonal boron nitride defects bridge the gap between solid-state nanophotonics and nanofluidics, opening new avenues for nanoscale sensing and optofluidics.

3.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747438

RESUMO

Surface-specific nonlinear optical techniques are ideally suited to investigate the complex structure of aqueous interfaces. For colloidal particles dispersed in aqueous solutions, interfacial properties can be retrieved with angle-resolved second harmonic scattering (AR-SHS). The mathematical framework of AR-SHS does not require a priori knowledge on the electrostatic distribution in the first few nanometers close to the interface, therefore allowing us to formulate a molecular-level description of the electrical double layer (EDL) based on the experimental data. However, farther away from the interface, an analytical form of the electrostatic potential decay is necessary to account for the distance dependence of the surface electrostatic field propagating into the solution. This requirement is especially important at low ionic strengths, where the electrostatic field is not efficiently screened by counterions. Here, we examine to what extent the analytical form of the electrostatic potential decay impacts the AR-SHS data analysis. We analyze the effect of different functions on the scattering form factors, on the integrated AR-SHS signal intensity, and on the surface parameters extracted from fitting the AR-SHS data. We find that the trends of the surface parameters remain similar regardless of the chosen function, demonstrating the robustness of our approach to establish a molecular-level picture of the EDL. At ionic strengths <10-4M for 100-nm diameter particles, a functional form that physically represents counterions packed more densely in the vicinity of the surface than in the case of the Poisson-Boltzmann distribution has the largest impact, resulting in an overestimation of the obtained surface potential.

4.
Nano Lett ; 23(21): 9858-9864, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37869786

RESUMO

The unique properties of water are critical for life. Water molecules have been reported to hydrate cations and anions asymmetrically in bulk water, being a key element in the balance of biochemical interactions. We show here that this behavior extends to charged lipid nanoscale interfaces. Charge hydration asymmetry was investigated by using nonlinear light scattering methods on lipid nanodroplets and liposomes. Nanodroplets covered with negatively charged lipids induce strong water ordering, while droplets covered with positively charged lipids induce negligible water ordering. Surprisingly, this charge-induced hydration asymmetry is reversed around liposomes. This opposite behavior in charge hydration asymmetry is caused by a delicate balance of electrostatic and hydrogen-bonding interactions. These findings highlight the importance of not only the charge state but also the specific distribution of neutral and charged lipids in cellular membranes.


Assuntos
Gotículas Lipídicas , Lipossomos , Lipossomos/química , Membrana Celular , Lipídeos , Água/química
5.
Biophys J ; 122(4): 624-631, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36659849

RESUMO

In biology, release of Ca2+ ions in the cytosol is essential to trigger or control many cell functions. Calcium signaling acutely depends on lipid membrane permeability to Ca2+. For proper understanding of membrane permeability to Ca2+, both membrane hydration and the structure of the hydrophobic core must be taken into account. Here, we vary the hydrophobic core of bilayer membranes and observe different types of behavior in high-throughput wide-field second harmonic imaging. Ca2+ translocation is observed through mono-unsaturated (DOPC:DOPA) membranes, reduced upon the addition of cholesterol, and completely inhibited for branched (DPhPC:DPhPA) and poly-unsaturated (SLPC:SLPA) lipid membranes. We propose, using molecular dynamics simulations, that ion transport occurs through ion-induced transient pores, which requires nonequilibrium membrane restructuring. This results in different rates at different locations and suggests that the hydrophobic structure of lipids plays a much more sophisticated regulating role than previously thought.


Assuntos
Bicamadas Lipídicas , Microscopia de Geração do Segundo Harmônico , Bicamadas Lipídicas/química , Microscopia , Íons , Colesterol/química , Simulação de Dinâmica Molecular
6.
Langmuir ; 39(18): 6447-6454, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37125843

RESUMO

When a nanoparticle (NP) is introduced into a biological environment, its identity and interactions are immediately attributed to the dense layer of proteins that quickly covers the particle. The formation of this layer, dubbed the protein corona, is in general a combination of proteins interacting with the surface of the NP and a contest between other proteins for binding sites either at the surface of the NP or upon the dense layer. Despite the importance for surface engineering and drug development, the molecular mechanisms and structure behind interfacial biomolecule action have largely remained elusive. We use ultrafast sum frequency scattering (SFS) spectroscopy to determine the structure and the mode of action by which these biomolecules interact with and manipulate interfaces. The majority of work in the field of sum frequency generation has been done on flat model interfaces. This limits some important membrane properties such as membrane fluidity and dimensionality─important factors in biomolecule-membrane interactions. To move toward three-dimensional (3D) nanoscopic interfaces, we utilize SFS spectroscopy to interrogate the surface of 3D lipid monolayers, which can be used as a model lipid-based nanocarrier system. In this study, we have utilized SFS spectroscopy to follow the action of lysozyme. SFS spectra in the amide I region suggest that there is lysozyme at the interface and that the lysozyme induces an increased lipid monolayer order. The binding of lysozyme with the NP is demonstrated by an increase in acyl chain order determined by the ratio of the CH3 symmetric and CH2 symmetric peak amplitudes. Furthermore, the lipid headgroup orientation s-PO2- change strongly supports lysozyme insertion into the lipid layer causing lipid disruption and reorientation. Altogether, with SFS, we have made a huge stride toward understanding the binding and structure change of proteins within the protein corona.


Assuntos
Fosfolipídeos , Coroa de Proteína , Fosfolipídeos/química , Muramidase/química , Análise Espectral/métodos , Proteínas/química
7.
Faraday Discuss ; 246(0): 407-425, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37455624

RESUMO

Investigating the electrical double layer (EDL) structure has been a long-standing challenge and has seen the emergence of several sophisticated techniques able to probe selectively the few molecular layers of a solid/water interface. While a qualitative estimation of the thickness of the EDL can be obtained using simple theoretical models, following experimentally its evolution is not straightforward and can be even more complicated in nano- or microscale systems, particularly when changing the ionic concentration by several orders of magnitude. Here, we bring insight into the structure of the EDL of SiO2 nanoparticle suspensions and its evolution with increasing ionic concentration using angle-resolved second harmonic scattering (AR-SHS). Below millimolar salt concentrations, we can successively characterize inner-sphere adsorption, diffuse layer formation, and outer-sphere adsorption. Moreover, we show for the first time that, by appropriately selecting the nanoparticle size, it is possible to retrieve information also in the millimolar range. There, we observe a decrease in the magnitude of the surface potential corresponding to a compression in the EDL thickness, which agrees with the results of several other electroanalytical and optical techniques. Molecular dynamics simulations suggest that the EDL compression mainly results from the diffuse layer compression rather than outer-sphere ions (Stern plane) moving closer to the surface.

8.
J Chem Phys ; 158(9): 094711, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889968

RESUMO

Polarimetric angle-resolved second-harmonic scattering (AR-SHS) is an all-optical tool enabling the study of unlabeled interfaces of nano-sized particles in an aqueous solution. As the second harmonic signal is modulated by interference between nonlinear contributions originating at the particle's surface and those originating in the bulk electrolyte solution due to the presence of a surface electrostatic field, the AR-SHS patterns give insight into the structure of the electrical double layer. The mathematical framework of AR-SHS has been previously established, in particular regarding changes in probing depth with ionic strength. However, other experimental factors may influence the AR-SHS patterns. Here, we calculate the size dependence of the surface and electrostatic geometric form factors for nonlinear scattering, together with their relative contribution to the AR-SHS patterns. We show that the electrostatic term is stronger in the forward scattering direction for smaller particle sizes, while the ratio of the electrostatic to surface terms decreases with increasing size. Besides this competing effect, the total AR-SHS signal intensity is also weighted by the particle's surface characteristics, given by the surface potential Φ0 and the second-order surface susceptibility χs,2 2. The weighting effect is experimentally demonstrated by comparing SiO2 particles of different sizes in NaCl and NaOH solutions of varying ionic strengths. For NaOH, the larger χs,2 2 values generated by deprotonation of surface silanol groups prevail over the electrostatic screening occurring at high ionic strengths; however, only for larger particle sizes. This study establishes a better connection between the AR-SHS patterns and surface properties and predicts trends for arbitrarily-sized particles.

9.
Nano Lett ; 22(18): 7394-7400, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36067223

RESUMO

Water is the liquid of life thanks to its three-dimensional adaptive hydrogen (H)-bond network. Confinement of this network may lead to dramatic structural changes influencing chemical and physical transformations. Although confinement effects occur on a <1 nm length scale, the upper length scale limit is unknown. Here, we investigate 3D-confinement over lengths scales ranging from 58-140 nm. By confining water in zwitterionic liposomes of different sizes and measuring the change in H-bond network conformation using second harmonic scattering (SHS), we determined long-range confinement effects in light and heavy water. D2O displays no detectable 3D-confinement effects <58 nm (<3 × 106 D2O molecules). H2O is distinctly different. The vesicle enclosed inner H-bond network has a different conformation compared to the outside network and the SHS response scales with the volume of the confining space. H2O displays confinement effects over distances >100 nm (>2 × 107 H2O molecules).


Assuntos
Lipossomos , Água , Óxido de Deutério/química , Água/química
10.
J Am Chem Soc ; 144(51): 23352-23357, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36521841

RESUMO

Unassisted ion transport through lipid membranes plays a crucial role in many cell functions without which life would not be possible, yet the precise mechanism behind the process remains unknown due to its molecular complexity. Here, we demonstrate a direct link between membrane potential fluctuations and divalent ion transport. High-throughput wide-field non-resonant second harmonic (SH) microscopy of membrane water shows that membrane potential fluctuations are universally found in lipid bilayer systems. Molecular dynamics simulations reveal that such variations in membrane potential reduce the free energy cost of transient pore formation and increase the ion flux across an open pore. These transient pores can act as conduits for ion transport, which we SH image for a series of divalent cations (Cu2+, Ca2+, Ba2+, Mg2+) passing through giant unilamellar vesicle (GUV) membranes. Combining the experimental and computational results, we show that permeation through pores formed via an ion-induced electrostatic field is a viable mechanism for unassisted ion transport.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/metabolismo , Transporte de Íons , Potenciais da Membrana , Cátions
11.
Proc Natl Acad Sci U S A ; 116(51): 25516-25523, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792179

RESUMO

The interface between water and folded proteins is very complex. Proteins have "patchy" solvent-accessible areas composed of domains of varying hydrophobicity. The textbook understanding is that these domains contribute additively to interfacial properties (Cassie's equation, CE). An ever-growing number of modeling papers question the validity of CE at molecular length scales, but there is no conclusive experiment to support this and no proposed new theoretical framework. Here, we study the wetting of model compounds with patchy surfaces differing solely in patchiness but not in composition. Were CE to be correct, these materials would have had the same solid-liquid work of adhesion (WSL ) and time-averaged structure of interfacial water. We find considerable differences in WSL , and sum-frequency generation measurements of the interfacial water structure show distinctively different spectral features. Molecular-dynamics simulations of water on patchy surfaces capture the observed behaviors and point toward significant nonadditivity in water density and average orientation. They show that a description of the molecular arrangement on the surface is needed to predict its wetting properties. We propose a predictive model that considers, for every molecule, the contributions of its first-nearest neighbors as a descriptor to determine the wetting properties of the surface. The model is validated by measurements of WSL in multiple solvents, where large differences are observed for solvents whose effective diameter is smaller than ∼6 Å. The experiments and theoretical model proposed here provide a starting point to develop a comprehensive understanding of complex biological interfaces as well as for the engineering of synthetic ones.

12.
J Chem Phys ; 155(18): 184704, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773948

RESUMO

The interaction of divalent copper ions (Cu2+) with cell membranes is crucial for a variety of physiological processes of cells, such as hormone synthesis and cellular energy production. These interactions would not be possible without membrane hydration. However, the role of water has not received a lot of attention in membrane studies. Here, we use high-throughput wide-field second harmonic (SH) microscopy to study the interaction between Cu2+ and hydrated freestanding Montal-Müller lipid membranes. The symmetric lipid membranes are composed of 1,2-diphytanoyl-sn-glycero-3-phosphocholine and either 1,2-diphytanoyl-sn-glycero-3-phosphate or 1,2-diphytanoyl-sn-glycero-3-phospho L-serine and are brought into contact with divalent Cu2+, which are added to one leaflet while maintaining the ionic strength balance. We observe transient domains of high SH intensity. In these areas, Cu2+ ions bind to the charged head groups, leading to charge neutralization on one side of the membrane. This exposes the ordered water at the non-interacting side of the membrane interface, which can be used to compute the interfacial membrane potential difference. We find that the domains of lipids with phosphatidic acid head groups display a higher interfacial membrane potential than those with phosphatidylserine head groups, which converts into higher dynamic electrostatic free energies and binding constants.


Assuntos
Cobre/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Microscopia de Geração do Segundo Harmônico , Água/análise , Água/química
13.
Proc Natl Acad Sci U S A ; 115(16): 4081-4086, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610320

RESUMO

Biological membranes are highly dynamic and complex lipid bilayers, responsible for the fate of living cells. To achieve this function, the hydrating environment is crucial. However, membrane imaging typically neglects water, focusing on the insertion of probes, resonant responses of lipids, or the hydrophobic core. Owing to a recent improvement of second-harmonic (SH) imaging throughput by three orders of magnitude, we show here that we can use SH microscopy to follow membrane hydration of freestanding lipid bilayers on millisecond time scales. Instead of using the UV/VIS resonant response of specific membrane-inserted fluorophores to record static SH images over time scales of >1,000 s, we SH imaged symmetric and asymmetric lipid membranes, while varying the ionic strength and pH of the adjacent solutions. We show that the nonresonant SH response of water molecules aligned by charge-dipole interactions with charged lipids can be used as a label-free probe of membrane structure and dynamics. Lipid domain diffusion is imaged label-free by means of the hydration of charged domains. The orientational ordering of water is used to construct electrostatic membrane potential maps. The average membrane potential depends quadratically on an applied external bias, which is modeled by nonlinear optical theory. Spatiotemporal fluctuations on the order of 100-mV changes in the membrane potential are seen. These changes imply that membranes are very dynamic, not only in their structure but also in their membrane potential landscape. This may have important consequences for membrane function, mechanical stability, and protein/pore distributions.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Microscopia Confocal/métodos , Difusão , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana , Fatores de Tempo , Água/análise
14.
J Am Chem Soc ; 142(45): 19094-19100, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124825

RESUMO

Ion identity and concentration influence the solubility of macromolecules. To date, substantial effort has been focused on obtaining a molecular level understanding of specific effects for anions. By contrast, the role of cations has received significantly less attention and the underlying mechanisms by which cations interact with macromolecules remain more elusive. To address this issue, the solubility of poly(N-isopropylacrylamide), a thermoresponsive polymer with an amide moiety on its side chain, was studied in aqueous solutions with a series of nine different cation chloride salts as a function of salt concentration. Phase transition temperature measurements were correlated to molecular dynamics simulations. The results showed that although all cations were on average depleted from the macromolecule/water interface, more strongly hydrated cations were able to locally accumulate around the amide oxygen. These weakly favorable interactions helped to partially offset the salting-out effect. Moreover, the cations approached the interface together with chloride counterions in solvent-shared ion pairs. Because ion pairing was concentration-dependent, the mitigation of the dominant salting-out effect became greater as the salt concentration was increased. Weakly hydrated cations showed less propensity for ion pairing and weaker affinity for the amide oxygen. As such, there was substantially less mitigation of the net salting-out effect for these ions, even at high salt concentrations.

15.
Nano Lett ; 19(11): 7608-7613, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31580677

RESUMO

Ion channels are responsible for numerous physiological functions ranging from transport to chemical and electrical signaling. Although static ion channel structure has been studied following a structural biology approach, spatiotemporal investigation of the dynamic molecular mechanisms of operational ion channels has not been achieved experimentally. In particular, the role of water remains elusive. Here, we perform label-free spatiotemporal second harmonic (SH) imaging and capacitance measurements of operational voltage-gated alamethicin ion channels in freestanding lipid membranes surrounded by aqueous solution on either side. We observe changes in SH intensity upon channel activation that are traced back to changes in the orientational distribution of water molecules that reorient along the field lines of transported ions. Of the transported ions, a fraction of 10-4 arrives at the hydrated membrane interface, leading to interfacial electrostatic changes on the time scale of a second. The time scale of these interfacial changes is influenced by the density of ion channels and is subject to a crowding mechanism. Ion transport along cell membranes is often associated with the propagation of electrical signals in neurons. As our study shows that this process is taking place over seconds, a more complex mechanism is likely responsible for the propagation of neuronal electrical signals than just the millisecond movement of ions.

16.
J Am Chem Soc ; 141(31): 12168-12181, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31323177

RESUMO

Lipid membranes provide diverse and essential functions in our cells relating to transport, energy harvesting and signaling. This variety of functions is controlled by the molecular architecture, such as the presence of hydrating water, specific chemical compounds and microscopic structures, such as the local membrane curvature, as well as macroscopic properties, such as the fluidity of the membrane. To understand the chemistry of membranes, ideally one needs access to multiple length scales simultaneously, using probes that are noninvasive, label-free and membrane-interface specific. This dream is generally pursued by following either a top-down approach, introducing labels to real cell membranes or by following a bottom-up approach with well-controlled but simplified membrane monolayer or supported membrane models. This Perspective offers an alternative path that ultimately envisions bringing together both approaches. By using intermediate nano-, micro- and macroscale free-floating membrane systems in combination with novel nonlinear optical methods, one can advance the understanding of realistic membranes on a more fundamental level. Here, we describe recent advances in understanding membrane molecular structure, hydration, electrostatics and the effect of variable length scale, curvature and confinement for 3D nano- and microscale membrane systems such as lipid droplets and liposomes. We also describe an approach to image membrane hydration and membrane potentials in real time and space together with an application to neuroscience. In doing so, we consider the emerging role of interfacial transient structural heterogeneities that are apparent in both model membranes as well as in whole cells.


Assuntos
Membrana Celular/química , Água/química , Bicamadas Lipídicas/química , Gotículas Lipídicas/química , Propriedades de Superfície
17.
Opt Express ; 27(3): 2235-2247, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732263

RESUMO

Neuronal morphology, long-distance transport and signalling critically depend on the organization of microtubules in the cytoskeleton. Second harmonic generation (SHG) imaging has been recognized as a potentially powerful tool for in situ label-free neuroimaging with specific sensitivity to microtubules. We study here the structural organization of microtubules in living neurons using a wide-field multiphoton microscope that performs 3D imaging using a structured illumination. This microscope allows label-free high throughput imaging of living mammalian neurons. We show that we can image structural correlations by taking advantage of the structured illumination and the coherence of the emitted light. The result allows us to study the microtubule organization throughout the development of the neuron and to differentiate between the regions of the cytoskeleton in the matured neuron.

18.
J Chem Phys ; 150(20): 204704, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31153210

RESUMO

In this work, we provide a comparison between the stability and the interfacial structure of micrometer-sized and nanometer-sized droplets by employing a multi-instrumental approach comprised of the surface-sensitive technique of sum frequency scattering as well as dynamic light scattering and microscopy. We monitor the stability of oil-in-water and water-in-oil emulsions and the structure of surfactants at the oil/water nano-interface, when stabilized with an oil-soluble neutral surfactant (Span80), a water-soluble anionic surfactant (sodium dodecyl sulfate, SDS), or with a combination of the two. Micron-sized droplets are found to be stabilized only when a surfactant soluble in the continuous phase is present in the system, in agreement with what is traditionally observed empirically. Surprisingly, the nanodroplets behave differently. Both oil and water nanodroplets can be stabilized by the same (neutral Span80) surfactant but with different surface structures. A combination of SDS and Span80 also suffices, but for the case of water droplets, the strongly amphiphilic SDS molecules are not detected at the interface. For the case of oil droplets, both surfactants are at the interface but do not structurally affect one another. Thus, it appears that, in this study, empirical rules such as the Bancroft rule, the hydrophile-lipophile-balance scale, and the surfactant affinity difference predict the stability of the micrometer-sized droplets better than the nanometer-sized ones, probably due to a different balance of interactions on different length scales.

20.
Langmuir ; 34(38): 11305-11310, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30157642

RESUMO

The interaction of oils and lipids is relevant for membrane biochemistry since the cell uses bilayer membranes, lipid droplets, and oily substances in its metabolic cycle. In addition, a variety of model lipid membrane systems, such as freestanding horizontal membranes and droplet interface bilayers, are made using oil to facilitate membrane monolayer apposition. We characterize the behavior of excess oil inside horizontal freestanding lipid bilayers using different oils, focusing on hexadecane and squalene. Using a combination of second-harmonic (SH) and white-light imaging, we measure how oil redistributes within the membrane bilayer after formation. SH imaging shows that squalene forms a wider annulus compared with hexadecane, suggesting that there is a higher quantity of squalene remaining in the bilayer compared with hexadecane. Excess oil droplets that appear right after membrane formation are tracked with white-light microscopy. Hexadecane droplets move directionally to the edge of the membrane with diffusion constants similar to those of single lipids, whereas squalene oil droplets move randomly with lower diffusion speeds similar to lipid condensed domains and remain trapped in the center of the bilayer for ∼1-3 h. We discuss the observed differences in terms of different coupling mechanisms between the oil and lipid molecules induced by the different chemical structures of the oils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA