Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
PLoS Biol ; 22(7): e3002692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954678

RESUMO

The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana/genética , Biofilmes/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
2.
J Antimicrob Chemother ; 79(7): 1473-1483, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742645

RESUMO

Antimicrobial resistance is a pressing concern that poses a significant threat to global public health, necessitating the exploration of alternative strategies to combat drug-resistant microbial infections. Recently, antimicrobial peptides (AMPs) have gained substantial attention as possible replacements for conventional antibiotics. Because of their pharmacodynamics and killing mechanisms, AMPs display a lower risk of bacterial resistance evolution compared with most conventional antibiotics. However, bacteria display different mechanisms to resist AMPs, and the role of metabolic pathways in the resistance mechanism is not fully understood. This review examines the intricate relationship between metabolic genes and AMP resistance, focusing on the impact of metabolic pathways on various aspects of resistance. Metabolic pathways related to guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) [collectively (p)ppGpp], the tricarboxylic acid (TCA) cycle, haem biosynthesis, purine and pyrimidine biosynthesis, and amino acid and lipid metabolism influence in different ways metabolic adjustments, biofilm formation and energy production that could be involved in AMP resistance. By targeting metabolic pathways and their associated genes, it could be possible to enhance the efficacy of existing antimicrobial therapies and overcome the challenges exhibited by phenotypic (recalcitrance) and genetic resistance toward AMPs. Further research in this area is needed to provide valuable insights into specific mechanisms, uncover novel therapeutic targets, and aid in the fight against antimicrobial resistance.


Assuntos
Peptídeos Antimicrobianos , Bactérias , Farmacorresistência Bacteriana , Redes e Vias Metabólicas , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Humanos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos
3.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37522891

RESUMO

Pharmacokinetic-pharmacodynamic (PKPD) models, which describe how drug concentrations change over time and how that affects pathogen growth, have proven highly valuable in designing optimal drug treatments aimed at bacterial eradication. However, the fast rise of antimicrobial resistance calls for increased focus on an additional treatment optimization criterion: avoidance of resistance evolution. We demonstrate here how coupling PKPD and population genetics models can be used to determine treatment regimens that minimize the potential for antimicrobial resistance evolution. Importantly, the resulting modelling framework enables the assessment of resistance evolution in response to dynamic selection pressures, including changes in antimicrobial concentration and the emergence of adaptive phenotypes. Using antibiotics and antimicrobial peptides as an example, we discuss the empirical evidence and intuition behind individual model parameters. We further suggest several extensions of this framework that allow a more comprehensive and realistic prediction of bacterial escape from antimicrobials through various phenotypic and genetic mechanisms.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bactérias/genética , Resistência a Medicamentos
4.
Proc Biol Sci ; 290(1998): 20230396, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161327

RESUMO

A fundamental goal in infection biology is to understand the emergence of variation in pathogen virulence-here defined as the decrease in host fitness caused by a pathogen. To uncover the sources of such variation, virulence can be decomposed into both host- and pathogen-associated components. However, decomposing virulence can be challenging owing to complex within-host pathogen dynamics such as bifurcating infections, which recently received increased empirical and theoretical attention. Bifurcating infections are characterized by the emergence of two distinct infection types: (i) terminal infections with high pathogen loads resulting in rapid host death, and (ii) persistent infections with lower loads and delayed host death. Here, we propose to use discrete mixture models to perform separate virulence decompositions for each infection type. Using this approach, we reanalysed a recently published experimental dataset on bacterial load and survival in Drosophila melanogaster. This analysis revealed several advantages of the new approach, most importantly the generation of a more comprehensive picture of the varying sources of virulence in different bacterial species. Beyond this application, our approach could provide valuable information for ground-truthing and improving theoretical models of within-host infection dynamics, which are developed to predict variation in infection outcome and pathogen virulence.


Assuntos
Drosophila melanogaster , Animais , Virulência , Carga Bacteriana
5.
PLoS Pathog ; 17(3): e1009443, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788905

RESUMO

Antimicrobial peptides (AMPs) are key components of innate immune defenses. Because of the antibiotic crisis, AMPs have also come into focus as new drugs. Here, we explore whether prior exposure to sub-lethal doses of AMPs increases bacterial survival and abets the evolution of resistance. We show that Escherichia coli primed by sub-lethal doses of AMPs develop tolerance and increase persistence by producing curli or colanic acid, responses linked to biofilm formation. We develop a population dynamic model that predicts that priming delays the clearance of infections and fuels the evolution of resistance. The effects we describe should apply to many AMPs and other drugs that target the cell surface. The optimal strategy to tackle tolerant or persistent cells requires high concentrations of AMPs and fast and long-lasting expression. Our findings also offer a new understanding of non-inherited drug resistance as an adaptive response and could lead to measures that slow the evolution of resistance.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Resistência Microbiana a Medicamentos/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Meliteno/farmacologia , Polissacarídeos/metabolismo
6.
Mol Ecol ; 32(23): 6543-6551, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36039743

RESUMO

The insects constitute the majority of animal diversity. Most insects are holometabolous: during complete metamorphosis their bodies are radically reorganized. This reorganization poses a significant challenge to the gut microbiota, as the gut is replaced during pupation, a process that does not occur in hemimetabolous insects. In holometabolous hosts, it offers the opportunity to decouple the gut microbiota between the larval and adult life stages resulting in high beta diversity whilst limiting alpha diversity. Here, we studied 18 different herbivorous insect species from five orders of holometabolous and three orders of hemimetabolous insects. Comparing larval and adult specimens, we find a much higher beta-diversity and hence microbiota turnover in holometabolous insects compared to hemimetabolous insects. Alpha diversity did not differ between holo- and hemimetabolous insects nor between developmental stages within these groups. Our results support the idea that pupation offers the opportunity to change the gut microbiota and hence might facilitate ecological niche shifts. This possible effect of niche shift facilitation could explain a selective advantage of the evolution of complete metamorphosis, which is a defining trait of the most speciose insect taxon, the holometabola.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Insetos/genética , Larva , Metamorfose Biológica , Microbiota/genética , Microbioma Gastrointestinal/genética
7.
PLoS Genet ; 16(3): e1008649, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163413

RESUMO

Unicellular organisms have the prevalent challenge to survive under oxidative stress of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). ROS are present as by-products of photosynthesis and aerobic respiration. These reactive species are even employed by multicellular organisms as potent weapons against microbes. Although bacterial defences against lethal and sub-lethal oxidative stress have been studied in model bacteria, the role of fluctuating H2O2 concentrations remains unexplored. It is known that sub-lethal exposure of Escherichia coli to H2O2 results in enhanced survival upon subsequent exposure. Here we investigate the priming response to H2O2 at physiological concentrations. The basis and the duration of the response (memory) were also determined by time-lapse quantitative proteomics. We found that a low level of H2O2 induced several scavenging enzymes showing a long half-life, subsequently protecting cells from future exposure. We then asked if the phenotypic resistance against H2O2 alters the evolution of resistance against oxygen stress. Experimental evolution of H2O2 resistance revealed faster evolution and higher levels of resistance in primed cells. Several mutations were found to be associated with resistance in evolved populations affecting different loci but, counterintuitively, none of them was directly associated with scavenging systems. Our results have important implications for host colonisation and infections where microbes often encounter reactive oxygen species in gradients.


Assuntos
Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Resistência a Medicamentos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
8.
Proc Biol Sci ; 285(1874)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540517

RESUMO

Antibiotic resistance constitutes one of the most pressing public health concerns. Antimicrobial peptides (AMPs) of multicellular organisms are considered part of a solution to this problem, and AMPs produced by bacteria such as colistin are last-resort drugs. Importantly, AMPs differ from many antibiotics in their pharmacodynamic characteristics. Here we implement these differences within a theoretical framework to predict the evolution of resistance against AMPs and compare it to antibiotic resistance. Our analysis of resistance evolution finds that pharmacodynamic differences all combine to produce a much lower probability that resistance will evolve against AMPs. The finding can be generalized to all drugs with pharmacodynamics similar to AMPs. Pharmacodynamic concepts are familiar to most practitioners of medical microbiology, and data can be easily obtained for any drug or drug combination. Our theoretical and conceptual framework is, therefore, widely applicable and can help avoid resistance evolution if implemented in antibiotic stewardship schemes or the rational choice of new drug candidates.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Evolução Molecular , Simulação por Computador , Testes de Sensibilidade Microbiana , Modelos Genéticos
9.
Biol Lett ; 14(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29563281

RESUMO

Cationic antimicrobial peptides are ubiquitous immune effectors of multicellular organisms. We previously reported, that in contrast to most of the classic antibiotics, cationic antimicrobial peptides (AMPs) do not increase mutation rates in E. coli Here, we provide new evidence showing that AMPs do not stimulate or enhance bacterial DNA recombination in the surviving fractions. Recombination accelerates evolution of antibiotic resistance. Our findings have implications for our understanding of host-microbe interactions, the evolution of innate immune defences, and shed new light on the dynamic of antimicrobial-resistance evolution.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/genética , Recombinação Genética , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos
10.
PLoS Genet ; 11(10): e1005546, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26430769

RESUMO

Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Resistência Microbiana a Medicamentos/genética , Mutagênese/efeitos dos fármacos , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Ferro/farmacologia , Mutação , Taxa de Mutação , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Catelicidinas
11.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275145

RESUMO

Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response.


Assuntos
Envelhecimento , Inflamação , Túbulos de Malpighi/lesões , Tenebrio/imunologia , Animais , Monofenol Mono-Oxigenase/imunologia , Interferência de RNA
13.
PLoS Pathog ; 11(11): e1005246, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544881

RESUMO

Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont "conspiracies" as described here are almost certainly widespread in holometobolous insects including many disease vectors.


Assuntos
Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Insetos/microbiologia , Microbiota/imunologia , Simbiose/imunologia , Animais , Larva/microbiologia , Metamorfose Biológica
14.
Mol Ecol ; 26(19): 5334-5343, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28762573

RESUMO

The simultaneous expression of costly immune effectors such as multiple antimicrobial peptides is a hallmark of innate immunity of multicellular organisms, yet the adaptive advantage remains unresolved. Here, we test current hypotheses on the evolution of such defence cocktails. We use RNAi gene knock-down to explore, the effects of three highly expressed antimicrobial peptides, displaying different degrees of activity in vitro against Staphylococcus aureus, during an infection in the beetle Tenebrio molitor. We find that a defensin confers no survival benefit but reduces bacterial loads. A coleoptericin contributes to host survival without affecting bacterial loads. An attacin has no individual effect. Simultaneous knock-down of the defensin with the other AMPs results in increased mortality and elevated bacterial loads. Contrary to common expectations, the effects on host survival and bacterial load can be independent. The expression of multiple AMPs increases host survival and contributes to the control of persisting infections and tolerance. This is an emerging property that explains the adaptive benefit of defence cocktails.


Assuntos
Imunidade Inata , Proteínas de Insetos/imunologia , Infecções Estafilocócicas/imunologia , Tenebrio/imunologia , Animais , Carga Bacteriana , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Interferência de RNA , Staphylococcus aureus
15.
Antimicrob Agents Chemother ; 60(3): 1717-24, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729502

RESUMO

Antimicrobial peptides (AMPs) are ancient and conserved across the tree of life. Their efficacy over evolutionary time has been largely attributed to their mechanisms of killing. Yet, the understanding of their pharmacodynamics both in vivo and in vitro is very limited. This is, however, crucial for applications of AMPs as drugs and also informs the understanding of the action of AMPs in natural immune systems. Here, we selected six different AMPs from different organisms to test their individual and combined effects in vitro. We analyzed their pharmacodynamics based on the Hill function and evaluated the interaction of combinations of two and three AMPs. Interactions of AMPs in our study were mostly synergistic, and three-AMP combinations displayed stronger synergism than two-AMP combinations. This suggests synergism to be a common phenomenon in AMP interaction. Additionally, AMPs displayed a sharp increase in killing within a narrow dose range, contrasting with those of antibiotics. We suggest that our results could lead a way toward better evaluation of AMP application in practice and shed some light on the evolutionary consequences of antimicrobial peptide interactions within the immune system of organisms.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Simulação por Computador , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana
16.
PLoS Pathog ; 10(10): e1004445, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299705

RESUMO

Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs) mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs) do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Mutagênese/imunologia , Vertebrados/imunologia , Animais , Anti-Infecciosos/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Bactérias/imunologia , Imunidade Inata/imunologia
17.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230067, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497269

RESUMO

Host-pathogen interactions can be influenced by the host microbiota, as the microbiota can facilitate or prevent pathogen infections. In addition, members of the microbiota can become virulent. Such pathobionts can cause co-infections when a pathogen infection alters the host immune system and triggers dysbiosis. Here we performed a theoretical investigation of how pathobiont co-infections affect the evolution of pathogen virulence. We explored the possibility that the likelihood of pathobiont co-infection depends on the evolving virulence of the pathogen. We found that, in contrast to the expectation from classical theory, increased virulence is not always selected for. For an increasing likelihood of co-infection with increasing pathogen virulence, we found scenario-specific selection for either increased or decreased virulence. Evolutionary changes, however, in pathogen virulence do not always translate into similar changes in combined virulence of the pathogen and the pathobiont. Only in one of the scenarios where pathobiont co-infection is triggered above a specific virulence level we found a reduction in combined virulence. This was not the case when the probability of pathobiont co-infection linearly increased with pathogen virulence. Taken together, our study draws attention to the possibility that host-microbiota interactions can be both the driver and the target of pathogen evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Coinfecção , Microbiota , Humanos , Virulência , Interações Hospedeiro-Patógeno
18.
Dev Comp Immunol ; 159: 105221, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925430

RESUMO

Infections with pathogenic Vibrio strains are associated with high summer mortalities of Pacific oysters Magalana (Crassostrea) gigas, affecting production worldwide. This raises the question of how M. gigas cultures can be protected against deadly Vibro infection. There is increasing experimental evidence of immune priming in invertebrates, where previous exposure to a low pathogen load boosts the immune response upon secondary exposure. Priming responses, however, appear to vary in their specificity across host and parasite taxa. To test priming specificity in the Vibrio - M. gigas system, we used two closely related Vibrio splendidus strains with differing degrees of virulence towards M. gigas. These V. splendidus strains were either isolated in the same location as the oysters (sympatric, opening up the potential for co-evolution) or in a different location (allopatric). We extracted cell-free haemolymph plasma from infected and control oysters to test the influence of humoral immune effectors on bacterial growth in vitro. While addition of haemolypmph plasma in general promoted growth of both strains, priming by an exposure to a sublethal dose of bacterial cells lead to inhibitory effects against a subsequent challenge with a potentially lethal dose in vitro. Inhibitory effects and immune priming was strongest when oysters had been primed with the sympatric Vibrio strain, but inhibitory effects were seen both when challenged with the sympatric as well as against allopatric V. splendidus, suggesting some degree of cross protection. The stronger immune priming against the sympatric strain suggests that priming could be more efficient against matching local strains potentially adding a component of local adaptation or co-evolution to immune priming in oysters. These in vitro results, however, were not reflected in the in vivo infection data, where we saw increased bacterial loads following an initial challenge. This discrepancy might suggests that that it is the humoral part of the oyster immune system that produces the priming effects seen in our in vitro experiments.

19.
Trends Microbiol ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238231

RESUMO

Antimicrobial resistance (AMR) is a major global health issue. Current measures for tackling it comprise mainly the prudent use of drugs, the development of new drugs, and rapid diagnostics. Relatively little attention has been given to forecasting the evolution of resistance. Here, we argue that forecasting has the potential to be a great asset in our arsenal of measures to tackle AMR. We argue that, if successfully implemented, forecasting resistance will help to resolve the antibiotic crisis in three ways: it will (i) guide a more sustainable use (and therefore lifespan) of antibiotics and incentivize investment in drug development, (ii) reduce the spread of AMR genes and pathogenic microbes in the environment and between patients, and (iii) allow more efficient treatment of persistent infections, reducing the continued evolution of resistance. We identify two important challenges that need to be addressed for the successful establishment of forecasting: (i) the development of bespoke technology that allows stakeholders to empirically assess the risks of resistance evolving during the process of drug development and therapeutic/preventive use, and (ii) the transformative shift in mindset from the current praxis of mostly addressing the problem of antibiotic resistance a posteriori to a concept of a priori estimating, and acting on, the risks of resistance.

20.
Front Immunol ; 14: 1140627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063911

RESUMO

Introduction: Upon infection, insect hosts simultaneously express a cocktail of antimicrobial peptides (AMPs) which can impede pathogen colonization and increase host fitness. It has been proposed that such a cocktail might be adaptive if the effects of co-expressed AMPs are greater than the sum of individual activities. This could potentially prevent the evolution of bacterial resistance. However, in vivo studies on AMPs in combination are scarce. Attacins are one of the relatively large AMP families, which show anti-Gram-negative activity in vitro. Material and methods: Here, we used RNA interference (RNAi) to silence three members of the Attacin family genes in the mealworm beetle, Tenebrio molitor: (TmAttacin1a (TmAtt1a), TmAttacin1b (TmAtt1b), and TmAttacin2 (TmAtt2) both individually and in combination. We then infected T. molitor with the Gram negative entomopathogen Pseudomonas entomophila. Results: We found that survival of the beetles was only affected by the knockdown of TmAttacin1b, TmAttacin2 and the knockdown of all three Attacins together. Triple knockdown, rather than individual or double knockdowns of AMPs, changes the temporal dynamics of their efficiency in controlling the colonization of P. entomophila in the insect body. Discussion: More precisely, AMP gene expression influences P. entomophila load early in the infection process, resulting in differences in host survival. Our results highlight the importance of studying AMP-interactions in vivo.


Assuntos
Besouros , Tenebrio , Animais , Tenebrio/genética , Tenebrio/microbiologia , Carga Bacteriana , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Antimicrobianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA