Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Clin Genet ; 103(4): 401-412, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36576162

RESUMO

Chromoanagenesis is a cellular mechanism that leads to complex chromosomal rearrangements (CCR) during a single catastrophic event. It may result in loss and/or gain of genetic material and may be responsible for various phenotypes. These rearrangements are usually sporadic. However, some familial cases have been reported. Here, we studied six families in whom an asymptomatic or paucisymptomatic parent transmitted a CCR to its offspring in an unbalanced manner. The rearrangements were characterized by karyotyping, fluorescent in situ hybridization, chromosomal microarray (CMA) and/or whole genome sequencing (WGS) in the carrier parents and offspring. We then hypothesized meiosis-pairing figures between normal and abnormal parental chromosomes that may have led to the formation of new unbalanced rearrangements through meiotic recombination. Our work indicates that chromoanagenesis might be associated with a normal phenotype and normal fertility, even in males, and that WGS may be the only way to identify these events when there is no imbalance. Subsequently, the CCR can be transmitted to the next generation in an unbalanced and unpredictable manner following meiotic recombination. Thereby, prenatal diagnosis using CMA should be proposed to these families to detect any pathogenic imbalances in the offspring.


Assuntos
Aberrações Cromossômicas , Rearranjo Gênico , Masculino , Feminino , Gravidez , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Meiose , Translocação Genética
2.
Mol Biol Evol ; 38(12): 5576-5587, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34464971

RESUMO

Human centromeres are mainly composed of alpha satellite DNA hierarchically organized as higher-order repeats (HORs). Alpha satellite dynamics is shown by sequence homogenization in centromeric arrays and by its transfer to other centromeric locations, for example, during the maturation of new centromeres. We identified during prenatal aneuploidy diagnosis by fluorescent in situ hybridization a de novo insertion of alpha satellite DNA from the centromere of chromosome 18 (D18Z1) into cytoband 15q26. Although bound by CENP-B, this locus did not acquire centromeric functionality as demonstrated by the lack of constriction and the absence of CENP-A binding. The insertion was associated with a 2.8-kbp deletion and likely occurred in the paternal germline. The site was enriched in long terminal repeats and located ∼10 Mbp from the location where a centromere was ancestrally seeded and became inactive in the common ancestor of humans and apes 20-25 million years ago. Long-read mapping to the T2T-CHM13 human genome assembly revealed that the insertion derives from a specific region of chromosome 18 centromeric 12-mer HOR array in which the monomer size follows a regular pattern. The rearrangement did not directly disrupt any gene or predicted regulatory element and did not alter the methylation status of the surrounding region, consistent with the absence of phenotypic consequences in the carrier. This case demonstrates a likely rare but new class of structural variation that we name "alpha satellite insertion." It also expands our knowledge on alphoid DNA dynamics and conveys the possibility that alphoid arrays can relocate near vestigial centromeric sites.


Assuntos
Centrômero , Proteínas Cromossômicas não Histona , Centrômero/genética , Centrômero/metabolismo , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Proteínas Cromossômicas não Histona/genética , DNA Satélite/genética , Humanos , Hibridização in Situ Fluorescente
3.
Haemophilia ; 28(1): 117-124, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480810

RESUMO

INTRODUCTION: Depending on the location of insertion of the gained region, F8 duplications can have variable clinical impacts from benign impact to severe haemophilia A phenotype. AIM: To characterize two large Xq28 duplications involving F8 incidentally detected by chromosome microarray analysis (CMA) in two patients presenting severe intellectual disability but no history of bleeding disorder. METHODS: Whole genome sequencing (WGS) was performed in order to characterize the two large Xq28 duplications at nucleotide level. RESULTS: In patient 1, a 60-73 kb gained region encompassing the exons 23-26 of F8 and SMIM9 was inserted at the int22h-2 locus following a non-homologous recombination between int22h-1 and int22h-2. We hypothesized that two independent events, micro-homology-mediated break-induced replication (MMBIR) and break-induced replication (BIR), could be involved in this rearrangement. In patient 2, the CMA found duplication from 101 to 116-kb long encompassing the exons 16-26 of F8 and SMIM9. The WGS analysis identified a more complex rearrangement with the presence of three genomic junctions. Due to the multiple micro-homologies observed at breakpoints, a replication-based mechanism such as fork stalling and template switching (FoSTeS) was greatly suspected. In both cases, these complex rearrangements preserved an intact copy of the F8. CONCLUSION: This study highlights the value of WGS to characterize the genomic junction at the nucleotide level and ultimately better describe the molecular mechanisms involved in Xq28 structural variations. It also emphasizes the importance of specifying the structure of the genomic gain in order to improve genotype-phenotype correlation and genetic counselling.


Assuntos
Hemofilia A , Cromossomos Humanos X/genética , Estudos de Associação Genética , Genômica , Hemofilia A/diagnóstico , Hemofilia A/genética , Humanos , Sequenciamento Completo do Genoma
4.
Arterioscler Thromb Vasc Biol ; 41(1): e63-e71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207932

RESUMO

OBJECTIVE: Primary hypobetalipoproteinemia is characterized by LDL-C (low-density lipoprotein cholesterol) concentrations below the fifth percentile. Primary hypobetalipoproteinemia mostly results from heterozygous mutations in the APOB (apolipoprotein B) and PCSK9 genes, and a polygenic origin is hypothesized in the remaining cases. Hypobetalipoproteinemia patients present an increased risk of nonalcoholic fatty liver disease and steatohepatitis. Here, we compared hepatic alterations between monogenic, polygenic, and primary hypobetalipoproteinemia of unknown cause. Approach and Results: Targeted next-generation sequencing was performed in a cohort of 111 patients with hypobetalipoproteinemia to assess monogenic and polygenic origins using an LDL-C-dedicated polygenic risk score. Forty patients (36%) had monogenic hypobetalipoproteinemia, 38 (34%) had polygenic hypobetalipoproteinemia, and 33 subjects (30%) had hypobetalipoproteinemia from an unknown cause. Patients with monogenic hypobetalipoproteinemia had lower LDL-C and apolipoprotein B plasma levels compared with those with polygenic hypobetalipoproteinemia. Liver function was assessed by hepatic ultrasonography and liver enzymes levels. Fifty-nine percent of patients with primary hypobetalipoproteinemia presented with liver steatosis, whereas 21% had increased alanine aminotransferase suggestive of liver injury. Monogenic hypobetalipoproteinemia was also associated with an increased prevalence of liver steatosis (81% versus 29%, P<0.001) and liver injury (47% versus 0%) compared with polygenic hypobetalipoproteinemia. CONCLUSIONS: This study highlights the importance of genetic diagnosis in the clinical care of primary hypobetalipoproteinemia patients. It shows for the first time that a polygenic origin of hypobetalipoproteinemia is associated with a lower risk of liver steatosis and liver injury versus monogenic hypobetalipoproteinemia. Thus, polygenic risk score is a useful tool to establish a more personalized follow-up of primary hypobetalipoproteinemia patients.


Assuntos
Apolipoproteína B-100/genética , LDL-Colesterol/sangue , Hipobetalipoproteinemias/genética , Herança Multifatorial , Mutação , Hepatopatia Gordurosa não Alcoólica/etiologia , Pró-Proteína Convertase 9/genética , Adulto , Biomarcadores/sangue , Regulação para Baixo , Feminino , Predisposição Genética para Doença , Humanos , Hipobetalipoproteinemias/sangue , Hipobetalipoproteinemias/complicações , Hipobetalipoproteinemias/diagnóstico , Masculino , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Fenótipo , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Adulto Jovem
5.
Hum Mutat ; 41(2): 465-475, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31730716

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy, historically believed to affect 1 of 500 people. MYBPC3 pathogenic variations are the most frequent cause of familial HCM and more than 90% of them introduce a premature termination codon. The current study aims to determine the prevalence of deep intronic MYBPC3 pathogenic variations that could lead to splice mutations. To improve molecular diagnosis, a next-generation sequencing (NGS) workflow based on whole MYBPC3 sequencing of a cohort of 93 HCM patients, for whom no putatively causative point mutations were identified after NGS sequencing of a panel of 48 cardiomyopathy-causing genes, was performed. Our approach led us to reconsider the molecular diagnosis of six patients of the cohort (6.5%). These HCM probands were carriers of either a new large MYBPC3 rearrangement or splice intronic variations (five cases). Four pathogenic intronic variations, including three novel ones, were detected. Among them, the prevalence of one of them (NM_000256.3:c.1927+ 600 C>T) was estimated at about 0.35% by the screening of 1,040 unrelated HCM individuals. This study suggests that deep MYBPC3 splice mutations account for a significant proportion of HCM cases (6.5% of this cohort). Consequently, NGS sequencing of MYBPC3 intronic sequences have to be performed systematically.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Sequenciamento de Nucleotídeos em Larga Escala , Idoso , Alelos , Processamento Alternativo , Éxons , Feminino , Expressão Gênica , Genes Reporter , Estudos de Associação Genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Mutação , Linhagem , Sítios de Splice de RNA
6.
Clin Genet ; 98(6): 589-594, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33111339

RESUMO

The aim of this study was to provide an efficient tool: reliable, able to increase the molecular diagnosis performance, to facilitate the detection of copy number variants (CNV), to assess genetic risk scores (wGRS) and to offer the opportunity to explore candidate genes. Custom SeqCap EZ libraries, NextSeq500 sequencing and a homemade pipeline enable the analysis of 311 dyslipidemia-related genes. In the training group (48 DNA from patients with a well-established molecular diagnosis), this next-generation sequencing (NGS) workflow showed an analytical sensitivity >99% (n = 532 variants) without any false negative including a partial deletion of one exon. In the prospective group, from 25 DNA from patients without prior molecular analyses, 18 rare variants were identified in the first intention panel genes, allowing the diagnosis of monogenic dyslipidemia in 11 patients. In six other patients, the analysis of minor genes and wGRS determination provided a hypothesis to explain the dyslipidemia. Remaining data from the whole NGS workflow identified four patients with potentially deleterious variants. This NGS process gives a major opportunity to accede to an enhanced understanding of the genetic of dyslipidemia by simultaneous assessment of multiple genetic determinants.


Assuntos
Variações do Número de Cópias de DNA/genética , Dislipidemias/genética , Doenças Genéticas Inatas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Dislipidemias/diagnóstico , Dislipidemias/patologia , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Testes Genéticos , Humanos , Masculino , Análise de Sequência de DNA/métodos
7.
J Med Genet ; 56(8): 526-535, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30923172

RESUMO

BACKGROUND: Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS: Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS: Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION: Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.


Assuntos
Aberrações Cromossômicas , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Rearranjo Gênico , Estudos de Associação Genética , Fenótipo , Sequenciamento Completo do Genoma , Adolescente , Adulto , Biomarcadores , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Masculino , Relação Estrutura-Atividade , Translocação Genética , Adulto Jovem
8.
Hum Mutat ; 40(11): 1993-2000, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31230393

RESUMO

Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Retroelementos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Testes Diagnósticos de Rotina , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
BMC Genomics ; 16: 226, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25887812

RESUMO

BACKGROUND: The whitefly Bemisia tabaci is an important agricultural pest with global distribution. This phloem-sap feeder harbors a primary symbiont, "Candidatus Portiera aleyrodidarum", which compensates for the deficient nutritional composition of its food sources, and a variety of secondary symbionts. Interestingly, all of these secondary symbionts are found in co-localization with the primary symbiont within the same bacteriocytes, which should favor the evolution of strong interactions between symbionts. RESULTS: In this paper, we analyzed the genome sequences of the primary symbiont Portiera and of the secondary symbiont Hamiltonella in the B. tabaci Mediterranean (MED) species in order to gain insight into the metabolic role of each symbiont in the biology of their host. The genome sequences of the uncultured symbionts Portiera and Hamiltonella were obtained from one single bacteriocyte of MED B. tabaci. As already reported, the genome of Portiera is highly reduced (357 kb), but has kept a number of genes encoding most essential amino-acids and carotenoids. On the other hand, Portiera lacks almost all the genes involved in the synthesis of vitamins and cofactors. Moreover, some pathways are incomplete, notably those involved in the synthesis of some essential amino-acids. Interestingly, the genome of Hamiltonella revealed that this secondary symbiont can not only provide vitamins and cofactors, but also complete the missing steps of some of the pathways of Portiera. In addition, some critical amino-acid biosynthetic genes are missing in the two symbiotic genomes, but analysis of whitefly transcriptome suggests that the missing steps may be performed by the whitefly itself or its microbiota. CONCLUSIONS: These data suggest that Portiera and Hamiltonella are not only complementary but could also be mutually dependent to provide a full complement of nutrients to their host. Altogether, these results illustrate how functional redundancies can lead to gene losses in the genomes of the different symbiotic partners, reinforcing their inter-dependency.


Assuntos
Enterobacteriaceae/genética , Genoma Bacteriano , Halomonadaceae/genética , Hemípteros/genética , Hemípteros/microbiologia , Simbiose/genética , Aminoácidos/biossíntese , Animais , DNA/análise , DNA/isolamento & purificação , DNA/metabolismo , Hemípteros/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Vitaminas/biossíntese
11.
Transl Res ; 255: 119-127, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528340

RESUMO

Genetic diagnosis of familial hypercholesterolemia (FH) remains unexplained in 30 to 70% of patients after exclusion of monogenic disease. There is now a growing evidence that a polygenic burden significantly modulates LDL-cholesterol (LDL-c) concentrations. Several LDL-c polygenic risk scores (PRS) have been set up. However, the balance between their diagnosis performance and their practical use in routine practice is not clearly established. Consequently, we set up new PRS based on our routine panel for sequencing and compared their diagnostic performance with previously-published PRS. After a meta-analysis, four new PRS including 165 to 1633 SNP were setup using different softwares. They were established using two French control cohorts (MONA LISA n=1082 and FranceGenRef n=856). Then the explained LDL-c variance and the ability of each PRS to discriminate monogenic negative FH patients (M-) versus healthy controls were compared with 4 previously-described PRS in 785 unrelated FH patients. Between all PRS, the 165-SNP PRS developed with PLINK showed the best LDL-c explained variance (adjusted R²=0.19) and the best diagnosis abilities (AUROC=0.77, 95%CI=0.74-0.79): it significantly outperformed all the previously-published PRS (p<1 × 10-4). By using a cut-off at the 75th percentile, 61% of M- patients exhibited a polygenic hypercholesterolemia with the 165-SNP PRS versus 48% with the previously published 12-SNP PRS (p =3.3 × 10-6). These results were replicated using the UK biobank. This new 165-SNP PRS, usable in routine diagnosis, exhibits better diagnosis abilities for a polygenic hypercholesterolemia diagnosis. It would be a valuable tool to optimize referral for whole genome sequencing.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol/genética , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/genética , Sequenciamento de Nucleotídeos em Larga Escala , Pró-Proteína Convertase 9/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Fatores de Risco , Receptores de LDL/genética , Mutação
12.
Eur J Med Genet ; 65(4): 104458, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35189377

RESUMO

TCF4 gene (18q21.1) encodes for a transcription factor with multiple isoforms playing a critical role during neurodevelopment. Molecular alterations of this gene are associated with Pitt-Hopkins syndrome, a severe condition characterized by intellectual disability, specific facial features and autonomic nervous system dysfunction. We report here three patients presenting with structural variations of the proximal part of TCF4 associated with a mild phenotype. The first patient is a six-years-old girl carrier of a pericentric inversion of chromosome 18, 46,XX,inv(18)(p11.2q21.1). Whole genome sequencing (WGS) characterized the breakpoint at the base-pair level at chr18:1262334_1262336 and chr18:53254747_53254751 (hg19). This latter breakpoint disrupted the proximal promotor region of TCF4 in the first intron of the gene. The second and third patients are a son and his mother, carrier of a 46 kb deletion characterized by high-resolution chromosomal micro-array and WGS (chr:18:53243454_53287927, hg19) encompassing the first three exon of TCF4 gene and including the proximal promotor region. Expression studies on blood lymphocytes in these patients showed a marked decrease of mRNA level for long isoforms of TCF4 and an increased level for shorter isoforms. The patients described here, together with previously reported patients with proximal structural alterations of TCF4, help to delineate a phenotype of mild ID with non-specific facial dysmorphism without characteristic features of PTHS. It also suggests a gradient of phenotypic severity inversely correlated with the number of intact TCF4 promotor regions, with expression of short isoforms compensating in part the loss of longer isoforms.


Assuntos
Deficiência Intelectual , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fácies , Humanos , Hiperventilação/genética , Deficiência Intelectual/genética , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
13.
DNA Cell Biol ; 40(3): 491-498, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33493017

RESUMO

Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and one of the most common causes of heart failure. TTN-truncating variants represent the most common cause of DCM. Similarly, among other prevalent DCM-causing genes, truncating variants were also frequently detected in BAG3, DSP, FLNC, and LMNA. For these four genes, the current study aims to determine the prevalence of deep intronic pathogenic variants that could lead to splice defects. A next-generation sequencing (NGS) workflow based on whole gene sequencing of BAG3, DSP, FLNC, and LMNA of a cohort of 95 DCM patients, for whom no putatively causative point mutations were identified after NGS of a panel of 48 cardiomyopathy-causing genes, was thus performed. Our approach did not lead us to reconsider the molecular diagnosis of any patient of the cohort. This study suggests that deep splice mutations do not account for a significant proportion of DCM cases. In contrast with MYBPC3 in hypertrophic cardiomyopathy cases, NGS of BAG3, DSP, FLNC, and LMNA whole intronic sequences would not significantly improve the efficiency of molecular diagnosis of DCM probands.


Assuntos
Cardiomiopatia Dilatada/genética , Predisposição Genética para Doença , Proteínas Musculares/genética , Mutação Puntual , Adulto , Cardiomiopatia Dilatada/diagnóstico , Feminino , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Patologia Molecular
14.
Eur J Med Genet ; 63(4): 103776, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31562959

RESUMO

Chromoanagenesis represents an extreme form of genomic rearrangements involving multiple breaks occurring on a single or multiple chromosomes. It has been recently described in both acquired and rare constitutional genetic disorders. Constitutional chromoanagenesis events could lead to abnormal phenotypes including developmental delay and congenital anomalies, and have also been implicated in some specific syndromic disorders. We report the case of a girl presenting with growth retardation, hypotonia, microcephaly, dysmorphic features, coloboma, and hypoplastic corpus callosum. Karyotype showed a de novo structurally abnormal chromosome 14q31qter region. Molecular characterization using SNP-array revealed a complex unbalanced rearrangement in 14q31.1-q32.2, on the paternal chromosome 14, including thirteen interstitial deletions ranging from 33 kb to 1.56 Mb in size, with a total of 4.1 Mb in size, thus suggesting that a single event like chromoanagenesis occurred. To our knowledge, this is one of the first case of 14q distal deletion due to a germline chromoanagenesis. Genome sequencing allowed the characterization of 50 breakpoints, leading to interruption of 10 genes including YY1 which fit with the patient's phenotype. This precise genotyping of breaking junction allowed better definition of genotype-phenotype correlations.


Assuntos
Anormalidades Múltiplas/patologia , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 14/genética , Deficiências do Desenvolvimento/patologia , Genoma Humano , Anormalidades Múltiplas/genética , Adulto , Transtornos Cromossômicos/genética , Deficiências do Desenvolvimento/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Fenótipo , Prognóstico , Sequenciamento Completo do Genoma
15.
Eur J Hum Genet ; 28(3): 324-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31591517

RESUMO

The HoxD cluster is critical for vertebrate limb development. Enhancers located in both the telomeric and centromeric gene deserts flanking the cluster regulate the transcription of HoxD genes. In rare patients, duplications, balanced translocations or inversions misregulating HOXD genes are responsible for mesomelic dysplasia of the upper and lower limbs. By aCGH, whole-genome mate-pair sequencing, long-range PCR and fiber fluorescent in situ hybridization, we studied patients from two families displaying mesomelic dysplasia limited to the upper limbs. We identified microduplications including the HOXD cluster and showed that microduplications were in an inverted orientation and inserted between the HOXD cluster and the telomeric enhancers. Our results highlight the existence of an autosomal dominant condition consisting of isolated ulnar dysplasia caused by microduplications inserted between the HOXD cluster and the telomeric enhancers. The duplications likely disconnect the HOXD9 to HOXD11 genes from their regulatory sequences. This presumptive loss-of-function may have contributed to the phenotype. In both cases, however, these rearrangements brought HOXD13 closer to telomeric enhancers, suggesting that the alterations derive from the dominant-negative effect of this digit-specific protein when ectopically expressed during the early development of forearms, through the disruption of topologically associating domain structure at the HOXD locus.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Duplicação Gênica , Proteínas de Homeodomínio/genética , Deformidades Congênitas das Extremidades Superiores/genética , Doenças do Desenvolvimento Ósseo/patologia , Células Cultivadas , Feminino , Humanos , Lactente , Mutação com Perda de Função , Masculino , Família Multigênica , Fenótipo , Deformidades Congênitas das Extremidades Superiores/patologia
16.
Mol Genet Genomic Med ; 8(3): e1114, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31985172

RESUMO

BACKGROUND: Structural variants (SVs) include copy number variants (CNVs) and apparently balanced chromosomal rearrangements (ABCRs). Genome sequencing (GS) enables SV detection at base-pair resolution, but the use of short-read sequencing is limited by repetitive sequences, and long-read approaches are not yet validated for diagnosis. Recently, 10X Genomics proposed Chromium, a technology providing linked-reads to reconstruct long DNA fragments and which could represent a good alternative. No study has compared short-read to linked-read technologies to detect SVs in a constitutional diagnostic setting yet. The aim of this work was to determine whether the 10X Genomics technology enables better detection and comprehension of SVs than short-read WGS. METHODS: We included 13 patients carrying various SVs. Whole genome analyses were performed using paired-end HiSeq X sequencing with (linked-read strategy) or without (short-read strategy) Chromium library preparation. Two different bioinformatic pipelines were used: Variants are called using BreakDancer for short-read strategy and LongRanger for long-read strategy. Variant interpretations were first blinded. RESULTS: The short-read strategy allowed diagnosis of known SV in 10/13 patients. After unblinding, the linked-read strategy identified 10/13 SVs, including one (patient 7) missed by the short-read strategy. CONCLUSION: In conclusion, regarding the results of this study, 10X Genomics solution did not improve the detection and characterization of SV.


Assuntos
Transtornos Cromossômicos/genética , Citogenética/métodos , Testes Genéticos/métodos , Variação Estrutural do Genoma , Sequenciamento Completo do Genoma/métodos , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Transtornos Cromossômicos/diagnóstico , Mutação em Linhagem Germinativa , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética
17.
Lancet Rheumatol ; 2(2): e99-e109, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263665

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a rare immunological disorder and genetic factors are considered important in its causation. Monogenic lupus has been associated with around 30 genotypes in humans and 60 in mice, while genome-wide association studies have identified more than 90 risk loci. We aimed to analyse the contribution of rare and predicted pathogenic gene variants in a population of unselected cases of childhood-onset SLE. METHODS: For this genetic panel analysis we designed a next-generation sequencing panel comprising 147 genes, including all known lupus-causing genes in humans, and potentially lupus-causing genes identified through GWAS and animal models. We screened 117 probands fulfilling American College of Rheumatology (ACR) criteria for SLE, ascertained through British and French cohorts of childhood-onset SLE, and compared these data with those of 791 ethnically matched controls from the 1000 Genomes Project and 574 controls from the FREX Consortium. FINDINGS: After filtering, mendelian genotypes were confirmed in eight probands, involving variants in C1QA, C1QC, C2, DNASE1L3, and IKZF1. Seven additional patients carried heterozygous variants in complement or type I interferon-associated autosomal recessive genes, with decreased concentrations of the encoded proteins C3 and C9 recorded in two patients. Rare variants that were predicted to be damaging were significantly enriched in the childhood-onset SLE cohort compared with controls; 25% of SLE probands versus 5% of controls were identified to harbour at least one rare, predicted damaging variant (p=2·98 × 10-11). Inborn errors of immunity were estimated to account for 7% of cases of childhood-onset SLE, with defects in innate immunity representing the main monogenic contribution. INTERPRETATION: An accumulation of rare variants that are predicted to be damaging in SLE-associated genes might contribute to disease expression and clinical heterogeneity. FUNDING: European Research Council.

18.
Mol Syndromol ; 10(4): 209-213, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31602193

RESUMO

Apparently, balanced chromosomal rearrangements usually have no phenotypic consequences for the carrier. However, in some cases, they may be associated with an abnormal phenotype. We report herein the case of a 4-year-old boy presenting with clinically isolated supravalvular aortic stenosis (SVAS). No chromosomal imbalance was detected by array CGH. The karyotype showed a balanced paracentric chromosome 7 inversion. Breakpoint characterization using paired-end whole-genome sequencing (WGS) revealed an ELN gene disruption in intron 1, accounting for the phenotype. Family study showed that the inversion was inherited, with incomplete penetrance. To our knowledge, this is the first case of a disruption of the ELN gene characterized by WGS. It contributes to refine the genotype-phenotype correlation in ELN disruption. Although this disruption is a rare etiology of SVAS, it cannot be detected by the diagnostic tests usually performed, such as array CGH or sequencing methods (Sanger, panel, or exome sequencing). With the future perspective of WGS as a diagnostic tool, it will be important to include a structural variation analysis in order to detect balanced rearrangements and gene disruption.

19.
Orphanet J Rare Dis ; 14(1): 121, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151468

RESUMO

Williams Beuren syndrome (WBS) is a multiple malformations/intellectual disability (ID) syndrome caused by 7q11.23 microdeletion and clinically characterized by a typical neurocognitive profile including excessive talkativeness and social disinhibition, often defined as "overfriendliness" and "hyersociability". WBS is generally considered as the polar opposite phenotype to Autism Spectrum Disorder (ASD). Surprisingly, the prevalence of ASD has been reported to be significantly higher in WBS (12%) than in general population (1%). Our study aims to investigate the molecular basis of the peculiar association of ASD and WBS. We performed chromosomal microarray analysis and whole exome sequencing in six patients presenting with WBS and ASD, in order to evaluate the possible presence of chromosomal or gene variants considered as pathogenic.Our study shows that the presence of ASD in the recruited WBS patients is due to i) neither atypically large deletions; ii) nor the presence of pathogenic variants in genes localized in the non-deleted 7q11.23 allele which would unmask recessive conditions; iii) moreover, we did not identify a second, indisputable independent genetic diagnosis, related to pathogenic Copy Number Variations or rare pathogenic exonic variants in known ID/ASD causing genes, although several variants of unknown significance were found. Finally, imprinting effect does not appear to be the only cause of autism in WBS patients, since the deletions occurred in alleles of both maternal and paternal origin.The social disinhibition observed in WBS does not follow common social norms and symptoms overlapping with ASD, such as restricted interests and repetitive behavior, can be observed in "typical" WBS patients: therefore, the terms "overfriendliness" and "hypersociability" appear to be a misleading oversimplification.The etiology of ASD in WBS is likely to be heterogeneous. Further studies on large series of patients are needed to clarify the observed variability in WBS social communication, ranging from excessive talkativeness and social disinhibition to absence of verbal language and social deficit.


Assuntos
Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Sequenciamento do Exoma/métodos , Síndrome de Williams/genética , Adolescente , Adulto , Criança , Deleção Cromossômica , Feminino , Humanos , Masculino , Fenótipo , Adulto Jovem
20.
BMC Med Genomics ; 11(1): 23, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510755

RESUMO

BACKGROUND: Sarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin. Despite multiple genome-wide association (GWAS) studies, no major pathogenic pathways have been identified to date. To find out relevant sarcoidosis predisposing genes, we searched for de novo and recessive mutations in 3 young probands with sarcoidosis and their healthy parents using a whole-exome sequencing (WES) methodology. METHODS: From the SARCFAM project based on a national network collecting familial cases of sarcoidosis, we selected three families (trios) in which a child, despite healthy parents, develop the disease before age 15 yr. Each trio was genotyped by WES (Illumina HiSEQ 2500) and we selected the gene variants segregating as 1) new mutations only occurring in affected children and 2) as recessive traits transmitted from each parents. The identified coding variants were compared between the three families. Allelic frequencies and in silico functional results were analyzed using ExAC, SIFT and Polyphenv2 databases. The clinical and genetic studies were registered by the ClinicalTrials.gov - Protocol Registration and Results System (PRS) ( https://clinicaltrials.gov ) receipt under the reference NCT02829853 and has been approved by the ethical committee (CPP LYON SUD EST - 2 - REF IRB 00009118 - September 21, 2016). RESULTS: We identified 37 genes sharing coding variants occurring either as recessive mutations in at least 2 trios or de novo mutations in one of the three affected children. The genes were classified according to their potential roles in immunity related pathways: 9 to autophagy and intracellular trafficking, 6 to G-proteins regulation, 4 to T-cell activation, 4 to cell cycle and immune synapse, 2 to innate immunity. Ten of the 37 genes were studied in a bibliographic way to evaluate the functional link with sarcoidosis. CONCLUSIONS: Whole exome analysis of case-parent trios is useful for the identification of genes predisposing to complex genetic diseases as sarcoidosis. Our data identified 37 genes that could be putatively linked to a pediatric form of sarcoidosis in three trios. Our in-depth focus on 10 of these 37 genes may suggest that the formation of the characteristic lesion in sarcoidosis, granuloma, results from combined deficits in autophagy and intracellular trafficking (ex: Sec16A, AP5B1 and RREB1), G-proteins regulation (ex: OBSCN, CTTND2 and DNAH11), T-cell activation (ex: IDO2, IGSF3), mitosis and/or immune synapse (ex: SPICE1 and KNL1). The significance of these findings needs to be confirmed by functional tests on selected gene variants.


Assuntos
Sequenciamento do Exoma , Linhagem , Sarcoidose/genética , Sequência de Bases , Criança , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA