Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 13(2): e1006626, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28231279

RESUMO

Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules.


Assuntos
Acetilcoenzima A/genética , Acetiltransferases/genética , Glucose/metabolismo , Histona Acetiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Histona Acetiltransferases/biossíntese , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5 , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética
2.
Paediatr Child Health ; 24(1): 19-22, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30792595

RESUMO

Children and youth with developmental and mental health conditions require a wide range of clinical supports and social services to improve their quality of life. However, few children and youth are currently able to adequately access these clinical, community and social services, and newcomers or those living in poverty are even further disadvantaged. Patient navigator programs can bridge this gap by facilitating connections to social services, supporting family coping strategies and advocating for patient clinical services. Although there are few paediatric-focused patient navigator programs in the literature, they offer the potential to improve short and long-term health outcomes. As social and clinical services, particularly for developmental and mental health conditions, become increasingly complex and restricted, it is important that physicians and policymakers consider implementing patient navigator programs with a rigorous evaluation framework to improve accessibility and health outcomes. This can ultimately facilitate policymakers in creating more equitable resources in challenging fiscal climates.

3.
Planta ; 237(4): 1149-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23291876

RESUMO

MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.


Assuntos
Linho/genética , Genes de Plantas , MicroRNAs/genética , Sequência de Bases , Sequência Conservada , Linho/metabolismo , Expressão Gênica , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Nat Cell Biol ; 19(8): 941-951, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28714971

RESUMO

Many asymmetrically dividing cells unequally partition cellular structures according to age. Yet, it is unclear how cells differentiate pre-existing from newly synthesized material. Yeast cells segregate the spindle pole body (SPB, centrosome equivalent) inherited from the previous mitosis to the bud, while keeping the new one in the mother cell. Here, we show that the SPB inheritance network (SPIN), comprising the kinases Swe1 (also known as Wee1) and Kin3 (also known as Nek2) and the acetyltransferase NuA4 (also known as Tip60), distinguishes pre-existing from new SPBs. Swe1 phosphorylated Nud1 (orthologous to Centriolin) on young SPBs as they turned into pre-existing ones. The subsequent inactivation of Swe1 protected newly assembling SPBs from being marked. Kin3 and NuA4 maintained age marks on SPBs through following divisions. Downstream of SPIN, the Hippo regulator Bfa1-Bub2 bound the marked SPB, directed the spindle-positioning protein Kar9 towards it and drove its partition to the bud. Thus, coordination of SPIN activity and SPB assembly encodes age onto SPBs to enable their age-dependent segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cromossomos Fúngicos , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Fase G1 , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Metáfase , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA