RESUMO
Quinoline represents a promising scaffold for developing potential drugs because of the wide range of biological and pharmacological activities it exhibits. In the present study, quinoline derivatives obtained from CADMA-Chem docking protocol were investigated in the mean of molecular dynamics simulations as potential inhibitors of acetylcholinesterase enzyme. The examined species can be partitioned between neutral, dq815 (2,3 dihydroxyl-quinoline-4-carbaldehyde), dq829 (2,3 dihydroxyl-quinoline-8-carboxylic acid methane ester), dq1356 (3,4 dihydroxyl-quinoline-6-carbaldehyde), dq1368 (3,4 dihydroxyl-quinoline-8-carboxylic acid methane ester) and dq2357 (5,6 dihydroxyl-quinoline-8-carboxylic acid methane ester), and deprotonated, dq815_dep, dq829_dep, dq1356_dep and dq2357_dep. Twelve molecular dynamics simulations were performed including those of natural acetylcholine, of the well-known donepezil inhibitor and of the founder quinoline chosen as reference. Key intermolecular interactions were detected and discussed to describe the different dynamic behavior of all the considered species. Binding energies calculation from MMPBSA well accounts for the dynamic behavior observed in the simulation time proposing dq1368 as promising candidate for the inhibition of acetylcholinesterase. Retrosynthetic route for the production of the investigated compounds is also proposed.
RESUMO
The SARS-CoV-2 main protease (Mpro) is a crucial enzyme for viral replication and has been considered an attractive drug target for the treatment of COVID-19. In this study, virtual screening techniques and in vitro assays were combined to identify novel Mpro inhibitors starting from around 8000 FDA-approved drugs. The docking analysis highlighted 17 promising best hits, biologically characterized in terms of their Mpro inhibitory activity. Among them, 7 cephalosporins and the oral anticoagulant betrixaban were able to block the enzyme activity in the micromolar range with no cytotoxic effect at the highest concentration tested. After the evaluation of the degree of conservation of Mpro residues involved in the binding with the studied ligands, the ligands' activity on SARS-CoV-2 replication was assessed. The ability of betrixaban to affect SARS-CoV-2 replication associated to its antithrombotic effect could pave the way for its possible use in the treatment of hospitalized COVID-19 patients.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Reposicionamento de Medicamentos , Ligantes , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica MolecularRESUMO
In this work, new steroidal aromatase inhibitors (AIs) were designed, synthesized, and tested. In one approach, C-ring substituted steroids namely those functionalized at C-11 position with an α or ß hydroxyl group or with a carbonyl group as well as C-9/C-11 steroidal olefins and epoxides were studied. It was found that the carbonyl group at C-11 is more beneficial for aromatase inhibition than the hydroxyl group, and that the C-ring epoxides were more potent than the C-ring olefins, leading to the discovery of a very strong AI, compound 7, with an IC50 of 0.011 µM, better than Exemestane, the steroidal AI in clinical use, which presents an IC50 of 0.050 µM. In another approach, we explored the biological activity of A-ring C-1/C-2 steroidal olefins and epoxides in relation to aromatase inhibition and compared it with the biological activity of C-ring C-9/C-11 steroidal olefins and epoxides. On the contrary to what was observed for the C-ring olefins and epoxides, the A-ring epoxides were less potent than A-ring olefins. Finally, the effect of 7ß-methyl substitution on aromatase inhibition was compared with 7α-methyl substitution, showing that 7ß-methyl is better than 7α-methyl substitution. Molecular modelling studies showed that the 7ß-methyl on C-7 seems to protrude into the opening to the access channel of aromatase in comparison to the 7α-methyl. This comparison led to find the best steroidal AI (12a) of this work with IC50 of 0.0058 µM. Compound 12a showed higher aromatase inhibition capacity than two of the three AIs currently in clinical use.
Assuntos
Inibidores da Aromatase , Aromatase , Inibidores da Aromatase/farmacologia , Aromatase/metabolismo , Esteroides/farmacologia , Relação Estrutura-Atividade , Compostos de EpóxiRESUMO
Protein-protein interactions (PPI) represent attractive targets for drug design. Thus, aiming at a deeper insight into the HSV-1 envelope glycoprotein D (gD), protein-protein docking and dynamic simulations of gD-HVEM and gD-Nectin-1 complexes were performed. The most stable complexes and the pivotal key residues useful for gD to anchor human receptors were identified and used as starting points for a structure-based virtual screening on a library of both synthetic and designed 1,2,3-triazole-based compounds. Their binding properties versus gD interface with HVEM and Nectin-1 along with their structure-activity relationships (SARs) were evaluated. Four [1,2,3]triazolo[4,5-b]pyridines were identified as potential HSV-1 gD inhibitors, for their good theoretical affinity towards all conformations of HSV-1 gD. Overall, this study suggests promising basis for the design of new antiviral agents targeting gD as a valuable strategy to prevent viral attachment and penetration into the host cell.
Assuntos
Herpesvirus Humano 1 , Humanos , Nectinas/metabolismo , Herpesvirus Humano 1/metabolismo , Moléculas de Adesão Celular/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/químicaRESUMO
N-terminal P23H opsin mutation accounts for most of retinitis pigmentosa (RP) cases. P23H functions and folding can be rescued by small chaperone ligands, which contributes to validate mutant opsin as a suitable target for pharmacological treatment of RP. However, the lack of structural details on P23H mutant opsin strongly impairs drug design, and new chemotypes of effective chaperones of P23H opsin are in high demand. Here, a computational-boosted workflow combining homology modeling with molecular dynamics (MD) simulations and virtual screening was used to select putative P23H opsin chaperones among different libraries through a structure-based approach. In vitro studies corroborated the reliability of the structural model generated in this work and identified a number of novel chemotypes of safe and effective chaperones able to promote P23H opsin trafficking to the outer cell membrane.
Assuntos
Opsinas , Retinose Pigmentar , Humanos , Opsinas/genética , Reprodutibilidade dos Testes , Opsinas de Bastonetes/química , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/uso terapêuticoRESUMO
A large number of SARS-CoV-2 mutations in a short period of time has driven scientific research related to vaccines, new drugs, and antibodies to combat the new variants of the virus. Herein, we present a web portal containing the structural information, the tridimensional coordinates, and the molecular dynamics trajectories of the SARS-CoV-2 spike protein and its main variants. The Spike Mutants website can serve as a rapid online tool for investigating the impact of novel mutations on virus fitness. Taking into account the high variability of SARS-CoV-2, this application can help the scientific community when prioritizing molecules for experimental assays, thus, accelerating the identification of promising drug candidates for COVID-19 treatment. Below we describe the main features of the platform and illustrate the possible applications for speeding up the drug discovery process and hypothesize new effective strategies to overcome the recurrent mutations in SARS-CoV-2 genome.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Mutação , Tratamento Farmacológico da COVID-19RESUMO
The SARS-CoV-2 non-structural protein 13 (nsp13) helicase is an essential enzyme for viral replication and has been identified as an attractive target for the development of new antiviral drugs. In detail, the helicase catalyzes the unwinding of double-stranded DNA or RNA in a 5' to 3' direction and acts in concert with the replication-transcription complex (nsp7/nsp8/nsp12). In this work, bioinformatics and computational tools allowed us to perform a detailed conservation analysis of the SARS-CoV-2 helicase genome and to further predict the druggable enzyme's binding pockets. Thus, a structure-based virtual screening was used to identify valuable compounds that are capable of recognizing multiple nsp13 pockets. Starting from a database of around 4000 drugs already approved by the Food and Drug Administration (FDA), we chose 14 shared compounds capable of recognizing three out of four sites. Finally, by means of visual inspection analysis and based on their commercial availability, five promising compounds were submitted to in vitro assays. Among them, PF-03715455 was able to block both the unwinding and NTPase activities of nsp13 in a micromolar range.
Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Reposicionamento de Medicamentos , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , DNA Helicases/metabolismo , Antivirais/farmacologiaRESUMO
The L-type amino acid transporter LAT1, involved in many biological processes including the overexpression of some tumors, is considered a potential pharmacological target. The 1,2,3-Dithiazole scaffold was predicted to inhibit LAT1 by the formation of an intermolecular disulfide bond with the thiolate group of cysteine(s). As a result of the identification of these irreversible covalent inhibitors, we decided to deeply investigate the recognition stage and the covalent interaction, characterizing the chemical structures of the selected ligands. With the aim to provide new insights into the access of the ligands to the binding pocket and to reveal the residues involved in the inhibition, we performed docking, molecular dynamics simulations, and density functional theory-based investigation of three 1,2,3-dithiazoles against LAT1. Our computational analysis further highlighted the crucial role played by water molecules in the inhibition mechanism. The results here presented are consistent with experimental observations and provide insights that can be helpful for the rational design of new-to-come LAT1's inhibitors.
Assuntos
Transportador 1 de Aminoácidos Neutros Grandes , Neoplasias , Cisteína , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Ligantes , Água/metabolismoRESUMO
The inhibition mechanism of the main protease (Mpro) of SARS-CoV-2 by ebselen (EBS) and its analog with a hydroxyl group at position 2 of the benzisoselenazol-3(2H)-one ring (EBS-OH) was studied by using a density functional level of theory. Preliminary molecular dynamics simulations on the apo form of Mpro were performed taking into account both the hydrogen donor and acceptor natures of the Nδ and Nε of His41, a member of the catalytic dyad. The potential energy surfaces for the formation of the Se-S covalent bond mediated by EBS and EBS-OH on Mpro are discussed in detail. The EBS-OH shows a distinctive behavior with respect to EBS in the formation of the noncovalent complex. Due to the presence of canonical H-bonds and noncanonical ones involving less electronegative atoms, such as sulfur and selenium, the influence on the energy barriers and reaction energy of the Minnesota hybrid meta-GGA functionals M06, M06-2X and M08HX, and the more recent range-separated hybrid functional wB97X were also considered. The knowledge of the inhibition mechanism of Mpro by the small protease inhibitors EBS or EBS-OH can enlarge the possibilities for designing more potent and selective inhibitor-based drugs to be used in combination with other antiviral therapies.
Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Isoindóis/farmacologia , Compostos Organosselênicos/farmacologia , Inibidores de Proteases/farmacologia , Antivirais/uso terapêutico , Sítios de Ligação/efeitos dos fármacos , COVID-19/virologia , Domínio Catalítico/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Desenho de Fármacos , Humanos , Isoindóis/química , Isoindóis/uso terapêutico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Organosselênicos/química , Compostos Organosselênicos/uso terapêutico , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismoRESUMO
Many biologically active compounds feature low solubility in aqueous media and, thus, poor bioavailability. The formation of the host-guest complex by using calixarene-based macrocycles (i.e., resorcinol-derived cyclic oligomers) with a good solubility profile can improve solubilization of hydrophobic drugs. Herein, we explore the ability of resorc[4]arenes to self-assemble in polar solutions, to form supramolecular aggregates, and to promote water-solubility of an isoflavone endowed with anti-cancer activity, namely Glabrescione B (GlaB). Accordingly, we synthesized several architectures featuring a different pattern of substitution on the upper rim including functional groups able to undergo acid dissociation (i.e., carboxyl and hydroxyl groups). The aggregation phenomenon of the amphiphilic resorc[4]arenes has been investigated in a THF/water solution by UV-visible spectroscopy, at different pH values. Based on their ionization properties, we demonstrated that the supramolecular assembly of resorc[4]arene-based systems can be modulated at given pH values, and thus promoting the solubility of GlaB.
Assuntos
Calixarenos/química , Água/química , Calixarenos/síntese química , Cromonas/química , Interações Hidrofóbicas e Hidrofílicas , SolubilidadeRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified in China as the etiologic agent of the recent COVID-19 pandemic outbreak. Due to its high transmissibility, this virus quickly spread throughout the world, causing considerable health issues. The scientific community exerted noteworthy efforts to obtain therapeutic solutions for COVID-19, and new scientific networks were constituted. No certified drugs to efficiently inhibit the virus were identified, and the development of de-novo medicines requires approximately ten years of research. Therefore, the repurposing of natural products could be an effective strategy to handle SARS-CoV-2 infection. This review aims to update on current status of the natural occurring compounds recognizing SARS-CoV-2 druggable targets. Among the clinical trials actually recruited, some natural compounds are ongoing to examine their potential role to prevent and to treat the COVID-19 infection. Many natural scaffolds, including alkaloids, terpenes, flavonoids, and benzoquinones, were investigated by in-silico, in-vitro, and in-vivo approaches. Despite the large data set obtained by a computational approach, experimental evidences in most cases are not available. To fill this gap, further efforts to validate these results are required. We believe that an accurate investigation of naturally occurring compounds may provide insights for the potential treatment of COVID-19 patients.
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Sistemas de Liberação de Medicamentos , SARS-CoV-2 , Antivirais/química , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/metabolismo , Humanos , Pandemias , SARS-CoV-2/química , SARS-CoV-2/metabolismoRESUMO
Recently major advances were gained on the designed proteins aimed to generate biomolecular mimics of proteases. Although such enzyme-like catalysts must still suffer refinements for improving the catalytic activity, at the moment, they represent a good example of artificial enzymes to be tested in different fields. Herein, a de novo designed homo-heptameric peptide assembly (CC-Hept) where the esterase activity towards p-nitro-phenylacetate was obtained for introduction of the catalytic triad (Cys-His-Glu) into the hydrophobic matrix, is the object of the present combined molecular dynamics and quantum mechanics/molecular mechanics investigation. Constant pH Molecular Dynamics simulations on the apoform of CC-Hept suggested that the Cys residues are present in the protonated form. Molecular dynamics (MD) simulations of the enzyme-substrate complex evidenced the attitude of the enzyme-like system to retain water molecules, necessary in the hydrolytic reaction, in correspondence of the active site, represented by the Cys-His-Glu triad on each of the seven chains, without significant structural perturbations. A detailed reaction mechanism of esterase activity of CC-Hept-Cys-His-Glu was investigated on the basis of the quantum mechanics/molecular mechanics calculations employing a large quantum mechanical (QM) region of the active site. The proposed mechanism is consistent with available esterases kinetics and structural data. The roles of the active site residues were also evaluated. The deacylation phase emerged as the rate-determining step, in agreement with esterase activity of other natural proteases.
Assuntos
Hidrolases/química , Hidrolases/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Teoria Quântica , Animais , Sítios de Ligação , Biocatálise , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Hidrólise , Domínios Proteicos , TermodinâmicaRESUMO
Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants. In this review, we have collected data obtained from various research groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains. In addition, the structure-function relationship was described and commented on, highlighting the high potential of alkaloids as antimicrobials.
Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Humanos , Infecções Estafilocócicas/microbiologiaRESUMO
Nature exploits different strategies for enhancing the catalytic activity of enzymes, often resorting to producing beneficial mutations. The case of post-translational proline hydroxylation mutation in the active site of polysaccharide deacetylase (PDA) Bc1960 from Bacillus cereus is an interesting example of how small chemical modifications can cause significant improvements in enzymatic activity. In the present study the deacetylation mechanism promoted by both OH-proline (2Hyp) and standard proline (Pro) containing PDA is investigated using density functional theory. Although the mechanism presented for the two examined enzymes is in agreement with protease catalysis in metalloenzymes, the analysis along the potential energy surface (PES) reveals that the intermediate and product benefit energetically from the presence of the hydroxyl group on the proline. Our calculations provide evidence that for PDA-2Hyp, the hydrogen bond network established by the -OH group on the Cα of the proline with its closest neighbors stabilizes the transition states and, consequently, the reaction takes advantage of this. These results further contribute towards explaining the different catalytic activity experimentally observed for the polysaccharide deacetylase enzymes.
Assuntos
Amidoidrolases/metabolismo , Hidroxiprolina/metabolismo , Amidoidrolases/química , Bacillus cereus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Ligação de Hidrogênio , Hidroxiprolina/química , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , TermodinâmicaRESUMO
Background: Dolutegravir, an integrase strand-transfer inhibitor (STI), shows a high genetic barrier to resistance. Dolutegravir is reported to be effective against viruses resistant to raltegravir and elvitegravir. In this study, we report the case of a patient treated with dolutegravir monotherapy. Failure of dolutegravir treatment was observed concomitant with the appearance of N155H-K211R-E212T mutations in the integrase (IN) gene in addition to the polymorphic K156N mutation that was present at baseline in this patient. Methods: The impact of N155H-K156N-K211R-E212T mutations was studied in cell-free, culture-based assays and by molecular modelling. Results: Cell-free and culture-based assays confirm that selected mutations in the patient, in the context of the polymorphic mutation K156N present at the baseline, lead to high resistance to dolutegravir requiring that the analysis be done at timepoints longer than usual to properly reveal the results. Interestingly, the association of only N155H and K156N is sufficient for significant resistance to dolutegravir. Modelling studies showed that dolutegravir is less stable in IN/DNA complexes with respect to the WT sequence. Conclusions: Our results indicate that the stability of STI IN/DNA complexes is an important parameter that must be taken into account when evaluating dolutegravir resistance. This study confirms that a pathway including N155H can be selected in patients treated with dolutegravir with the help of the polymorphic K156N that acts as a secondary mutation that enhances the resistance to dolutegravir.
Assuntos
Farmacorresistência Viral , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Mutação de Sentido Incorreto , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Integrase de HIV/química , Inibidores de Integrase de HIV/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Humanos , Simulação de Acoplamento Molecular , Oxazinas , Piperazinas , Piridonas , Falha de TratamentoRESUMO
We report a real-life 3D therapy failure in a patient treated with ombitasvir (OMV)/paritaprevir/ritonavir and dasabuvir without ribavirin (3D-R). He had therapy failure at week 12 after the end of treatment. We detected resistance-associated substitutions (RASs) plus polymorphisms on NS3, NS5A, and NS5B target regions by population sequencing (15% cut-off) at baseline, at relapse and during follow-up. About this, NS5A RASs generally persist longer than resistances in the other target genes and may impact treatment outcome. Therefore, to evaluate OMV drug-resistance mechanism, we studied the acquired RAS plus polymorphisms on NS5A phosphoprotein by computational studies. OMV showed a higher affinity towards baseline and 93H/108 K mutant structure (follow-up) with respect to 93H/R108 mutant structure (relapse) on phosphoprotein. By Molecular Dynamics simulations (MDs), structural information about the protein stability in presence of OMV were observed. According to our data, molecular modeling approach has proved to be a powerful method to evaluate the impact of these RASs plus specific amino acid (AA) changes on phosphoprotein.
Assuntos
Anilidas/farmacologia , Antivirais/farmacologia , Carbamatos/farmacologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Mutação de Sentido Incorreto , Proteínas não Estruturais Virais/genética , Idoso , Humanos , Masculino , Modelos Moleculares , Simulação de Dinâmica Molecular , Polimorfismo Genético , Prolina , Recidiva , Falha de Tratamento , Valina , Proteínas não Estruturais Virais/químicaRESUMO
Bioconjugation is one of the most promising strategies to improve drug delivery, especially in cancer therapy. Biomolecules such as bile acids (BAs) have been intensively explored as carriers, due to their peculiar physicochemical properties and biocompatibility. BAs trafficking is regulated by intracellular lipid-binding proteins and their transport in the liver can be studied using chicken liver Bile Acid-Binding Proteins (cL-BABPs) as a reference model. Therefore, we conceived the idea of developing a BA-conjugate with Mirin, an exonuclease inhibitor of Mre11 endowed with different anticancer activities, to direct its transport to the liver. Following computational analysis of various BAs in complex with cL-BABP, we identified cholic acid (CA) as the most promising candidate as carrier, leading to the synthesis of a novel bioconjugate named CA-M11. As predicted by computational data and confirmed by X-ray crystallographic studies, CA-M11 was able to accommodate into the binding pocket of BABP. Hence, it can enter BAs trafficking in the hepatic compartment and here release Mirin. The effect of CA-M11, evaluated in combination with varying concentrations of Doxorubicin on HepG2 cell line, demonstrated a significant increase in cell mortality compared to the use of the cytotoxic drug or Mirin alone, thus highlighting chemo-sensitizing properties. The promising results regarding plasma stability for CA-M11 validate its potential as a valuable agent or adjuvant for hepatic cancer therapy.
Assuntos
Proteínas de Transporte , Ácido Cólico , Neoplasias Hepáticas , Humanos , Ácido Cólico/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Animais , Proteínas de Transporte/metabolismo , Doxorrubicina/farmacologia , Galinhas , Antineoplásicos/farmacologia , Antineoplásicos/química , Fígado/metabolismo , Fígado/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Glicoproteínas de MembranaRESUMO
Genomic surveillance based on sequencing the entire genetic code of SARS-CoV-2 involves monitoring and studying genetic changes and variations in disease-causing organisms such as viruses and bacteria. By tracing the virus, it is possible to prevent epidemic spread in the community, ensuring a 'precision public health' strategy. A peptide-based design was applied to provide an efficacious strategy that is able to counteract any emerging viral variant of concern dynamically and promptly to affect the outcomes of a pandemic at an early stage while waiting for the production of the anti-variant-specific vaccine, which require longer times. The inhibition of the interaction between the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and one of the cellular receptors (DPP4) that its receptors routinely bind to infect human cells is an intriguing therapeutic approach to prevent the virus from entering human cells. Among the other modalities developed for this purpose, peptides surely offer unique advantages, including ease of synthesis, serum stability, low immunogenicity and toxicity, and small production and distribution chain costs. Here, we obtained a potent new inhibitor based on the rearrangement of a previously identified peptide that has been rationally designed on a cell dipeptidyl peptidase 4 (DPP4) sequence, a ubiquitous membrane protein known to bind the RBD-SPIKE domain of the virus. This novel peptide (named DPP4-derived), conceived as an endogenous "drug", is capable of targeting the latest tested variants with a high affinity, reducing the VSV* DG-Fluc pseudovirus Omicron's infection capacity by up to 14%, as revealed by in vitro testing in human Calu-3 cells. Surface plasmon resonance (SPR) confirmed the binding affinity of the new DPP4-derived peptide with Omicron variant RBD.
RESUMO
In this work, quantum chemical calculations based on density functional theory (DFT) were performed to predict the antioxidant potential of four bioactive gut microbiota metabolites of the natural polyphenols ellagitannins (ETs) and ellagic acid (EA), also known as urolithins (UROs). In order to evaluate their ability to counter the effect of oxidative stress caused by reactive oxygen species (ROS), such as the hydroperoxyl radical (â¢OOH), different reaction mechanisms were investigated, considering water and lipid-like environments. Through our in silico results, it emerged that at physiological pH, the scavenging activity of all urolithins, except urolithin B, are higher than that of trolox and other potent antioxidants existing in nature, such as EA, α-mangostin, allicin, caffeine and melatonin. These findings were confirmed by experimental assays.
RESUMO
Viruses have been recognized as the etiological agents responsible for many pathological conditions ranging from asymptomatic infections to serious diseases, even leading to death. For this reason, many efforts have been made to identify selective viral targets with the aim of developing efficient therapeutic strategies, devoid of drug-resistance issues. Considering their crucial role in the viral life cycle, polymerases are very attractive targets. Among the classes of compounds explored as viral polymerases inhibitors, here we present an overview of non-nucleoside triazole-based compounds identified in the last fifteen years. Furthermore, the structure-activity relationships (SAR) of the different chemical entities are described in order to highlight the key chemical features required for the development of effective antiviral agents.