RESUMO
For CNS lymphomas (CNSL), there is a high need for minimally invasive and easily obtainable diagnostic markers. Intrathecal IgM synthesis can easily be determined in routine CSF diagnostics. The aim of this study was to systematically investigate the diagnostic potential of intrathecal IgM synthesis in primary and secondary CNSL (PCNSL and SCNSL). In this retrospective study, patients with a biopsy-proven diagnosis of PCNSL or SCNSL were compared with patients with other neurological diseases in whom CNSL was initially the primary radiological differential diagnosis based on MRI. Sensitivity and specificity of intrathecal IgM synthesis were calculated using receiver operating characteristic curves. Seventy patients with CNSL were included (49 PCNSL and 21 SCNSL) and compared to 70 control patients. The sensitivity and specificity for the diagnosis of CNSL were 49% and 87%, respectively, for the entire patient population and 66% and 91% after selection for cases with tumor access to the CSF system and isolated intrathecal IgM synthesis. In cases with MRI-based radiological suspicion of CNSL, intrathecal IgM synthesis has good specificity but limited sensitivity. Because of its low-threshold availability, analysis of intrathecal IgM synthesis has the potential to lead to higher diagnostic accuracy, especially in resource-limited settings, and deserves further study.
Assuntos
Neoplasias do Sistema Nervoso Central , Imunoglobulina M , Linfoma , Humanos , Imunoglobulina M/líquido cefalorraquidiano , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Neoplasias do Sistema Nervoso Central/imunologia , Idoso , Linfoma/líquido cefalorraquidiano , Linfoma/diagnóstico , Adulto , Biomarcadores Tumorais/líquido cefalorraquidiano , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Sensibilidade e Especificidade , Adulto JovemRESUMO
BACKGROUND: Emerging evidence suggests that fasting could play a key role in cancer treatment. Its metabolic effects on gliomas require further investigation. PURPOSE: To design a multi-voxel 1H/31P MR-spectroscopic imaging (MRSI) protocol for noninvasive metabolic monitoring of cerebral, fasting-induced changes on an individual patient/tumor level, and to assess its technical reliability/reproducibility. STUDY TYPE: Prospective. POPULATION: MRS phantom. Twenty-two patients (mean age = 61, 6 female) with suspected WHO grade II-IV glioma examined before and after 72-hour-fasting prior to biopsy/resection. FIELD STRENGTH/SEQUENCE: 3-T, 1H decoupled 3D 31P MRSI, 2D 1H sLASER MRSI at an echo time of 144 msec, 2D 1H MRSI (as water reference), T1-weighted, T1-weighted contrast-enhanced, T2-weighted, and FLAIR. sLASER and PRESS sequences were used for phantom measurements. ASSESSMENT: Phantom measurements and spectral simulations were performed with various echo-times for protocol optimization. In vivo spectral analyses were conducted using LCModel and AMARES, obtaining quality/fitting parameters (linewidth, signal-to-noise-ratio, and uncertainty measures of fitting) and metabolite intensities. The volume of glioma sub-regions was calculated and correlated with MRS findings. Ex-vivo spectra of necrotic tumor tissues were obtained using high-resolution magic-angle spinning (HR-MAS) technique. STATISTICAL TESTS: Wilcoxon signed-rank test, Bland-Altman plots, and coefficient of variation were used for repeatability analysis of quality/fitting parameters and metabolite concentrations. Spearman ρ correlation for the concentration of ketone bodies with volumes of glioma sub-regions was determined. A P-value <0.05 was considered statistically significant. RESULTS: 1H and 31P repeatability measures were highly consistent between the two sessions. ß-hydroxybutyrate and acetoacetate were detectable (fitting-uncertainty <50%) in glioma sub-regions of all patients who completed the 72-hour-fasting cycle. ß-hydroxybutyrate accumulation was significantly correlated with the necrotic/non-enhancing tumor core volume (ρ = 0.81) and validated using ex-vivo 1H HR-MAS. DATA CONCLUSION: We propose a comprehensive MRS protocol that may be used for monitoring cerebral, fasting-induced changes in patients with glioma. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.
RESUMO
PURPOSE: Reprogramming of amino acid metabolism is relevant for initiating and fueling tumor formation and growth. Therefore, there has been growing interest in anticancer therapies targeting amino acid metabolism. While developing personalized therapeutic approaches to glioma, in vivo proton magnetic resonance spectroscopy (MRS) is a valuable tool for non-invasive monitoring of tumor metabolism. Here, we evaluated MRS-detected brain amino acids and myo-inositol as potential diagnostic and prognostic biomarkers in glioma. METHOD: We measured alanine, glycine, glutamate, glutamine, and myo-inositol in 38 patients with MRI-suspected glioma using short and long echo-time single-voxel PRESS MRS sequences. The detectability of alanine, glycine, and myo-inositol and the (glutamate + glutamine)/total creatine ratio were evaluated against the patients' IDH mutation status, CNS WHO grade, and overall survival. RESULTS: While the detection of alanine and non-detection of myo-inositol significantly correlated with IDH wildtype (p = 0.0008, p = 0.007, respectively) and WHO grade 4 (p = 0.01, p = 0.04, respectively), glycine detection was not significantly associated with either. The ratio of (glutamate + glutamine)/total creatine was significantly higher in WHO grade 4 than in 2 and 3. We found that the overall survival was significantly shorter in glioma patients with alanine detection (p = 0.00002). CONCLUSION: Focusing on amino acids in MRS can improve its diagnostic and prognostic value in glioma. Alanine, which is visible at long TE even in the presence of lipids, could be a relevant indicator for overall survival.
RESUMO
PURPOSE: The prognosis of patients ≥ 75 years suffering from glioblastoma is poor. Novel therapies are usually reserved for patients ≤ 70 years. In an aging population, treatment of very elderly patients remains a challenge. METHODS: Between 2010 and 2018, a total of 977 glioblastoma patients were treated at our institution. Of these, 143 patients were ≥ 75 years at diagnosis. Primary procedure was surgical resection or biopsy followed by adjuvant treatment, whenever possible. We retrospectively investigated overall survival (OS) and potential prognostic factors influencing survival, including Karnofsky Performance Status (KPS), surgical therapy, adjuvant therapy as well as MGMT promotor status. RESULTS: In very elderly patients, median age was 79 years (range: 75-110). Biopsy only was performed in 104 patients; resection was performed in 39 patients. Median OS for the entire cohort was 5.9 months. Univariate analysis showed that KPS at presentation (≥ 70 vs. ≤60), surgery vs. biopsy, adjuvant chemotherapy and adjuvant radiotherapy were significantly associated with OS (6 vs. 3, p < 0.0111; 12 vs. 4, p = 0.0011; 11 vs. 4, p = 0.0003 and 10 vs. 1.5 months, p < 0.0001, respectively). Multivariate analysis confirmed adjuvant radiotherapy (p < 0.0001) and chemotherapy (p = 0.0002) as independent factors influencing OS. CONCLUSION: For very elderly patients, the natural course of disease without treatment is devastating. These patients benefit from multimodal treatment including adjuvant radiotherapy and chemotherapy. A beneficial effect of resection has not been demonstrated. Treatment options and outcomes should be thoughtfully discussed before treatment decisions are made.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Idoso , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Resultado do Tratamento , Estudos Retrospectivos , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Prognóstico , Terapia CombinadaRESUMO
PURPOSE: Molecular diagnostics including next generation gene sequencing are increasingly used to determine options for individualized therapies in brain tumor patients. We aimed to evaluate the decision-making process of molecular targeted therapies and analyze data on tolerability as well as signals for efficacy. METHODS: Via retrospective analysis, we identified primary brain tumor patients who were treated off-label with a targeted therapy at the University Hospital Frankfurt, Goethe University. We analyzed which types of molecular alterations were utilized to guide molecular off-label therapies and the diagnostic procedures for their assessment during the period from 2008 to 2021. Data on tolerability and outcomes were collected. RESULTS: 413 off-label therapies were identified with an increasing annual number for the interval after 2016. 37 interventions (9%) were targeted therapies based on molecular markers. Glioma and meningioma were the most frequent entities treated with molecular matched targeted therapies. Rare entities comprised e.g. medulloblastoma and papillary craniopharyngeoma. Molecular targeted approaches included checkpoint inhibitors, inhibitors of mTOR, FGFR, ALK, MET, ROS1, PIK3CA, CDK4/6, BRAF/MEK and PARP. Responses in the first follow-up MRI were partial response (13.5%), stable disease (29.7%) and progressive disease (46.0%). There were no new safety signals. Adverse events with fatal outcome (CTCAE grade 5) were not observed. Only, two patients discontinued treatment due to side effects. Median progression-free and overall survival were 9.1/18 months in patients with at least stable disease, and 1.8/3.6 months in those with progressive disease at the first follow-up MRI. CONCLUSION: A broad range of actionable alterations was targeted with available molecular therapeutics. However, efficacy was largely observed in entities with paradigmatic oncogenic drivers, in particular with BRAF mutations. Further research on biomarker-informed molecular matched therapies is urgently necessary.
Assuntos
Neoplasias Encefálicas , Terapia de Alvo Molecular , Humanos , Mutação , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas B-raf , Estudos RetrospectivosRESUMO
BACKGROUND AND PURPOSE: Progressive multifocal leukoencephalopathy (PML) constitutes a severe disease with increasing incidence, mostly in the context of immunosuppressive therapies. A detailed understanding of immune response in PML appears critical for the treatment strategy. The aim was a comprehensive immunoprofiling and radiological characterization of magnetic resonance imaging (MRI) defined PML variants. METHODS: All biopsy-confirmed PML patients (n = 15) treated in our department between January 2004 and July 2019 were retrospectively analysed. Data from MRI, histology as well as detailed clinical and outcome data were collected. The MRI-defined variants of classical (cPML) and inflammatory (iPML) PML were discriminated based on the intensity of gadolinium enhancement. In these PML variants, intensity and localization (perivascular vs. parenchymal) of inflammation in MRI and histology as well as the cellular composition by immunohistochemistry were assessed. The size of the demyelinating lesions was correlated with immune cell infiltration. RESULTS: Patients with MRI-defined iPML showed a stronger intensity of inflammation with an increased lymphocyte infiltration on histological level. Also, iPML was characterized by a predominantly perivascular inflammation. However, cPML patients also demonstrated certain inflammatory tissue alterations. Infiltration of CD163-positive microglia and macrophage (M/M) subtypes correlated with PML lesion size. CONCLUSIONS: The non-invasive MRI-based discrimination of PML variants allows for an estimation of inflammatory tissue alterations, although exhibiting limitations in MRI-defined cPML. The association of a distinct phagocytic M/M subtype with the extent of demyelination might reflect disease progression.
Assuntos
Leucoencefalopatia Multifocal Progressiva , Meios de Contraste , Gadolínio , Humanos , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos RetrospectivosRESUMO
PURPOSE: The prospective, randomized ERGO2 trial investigated the effect of calorie-restricted ketogenic diet and intermittent fasting (KD-IF) on re-irradiation for recurrent brain tumors. The study did not meet its primary endpoint of improved progression-free survival in comparison to standard diet (SD). We here report the results of the quality of life/neurocognition and a detailed analysis of the diet diaries. METHODS: 50 patients were randomized 1:1 to re-irradiation combined with either SD or KD-IF. The KD-IF schedule included 3 days of ketogenic diet (KD: 21-23 kcal/kg/d, carbohydrate intake limited to 50 g/d), followed by 3 days of fasting and again 3 days of KD. Follow-up included examination of cognition, quality of life and serum samples. RESULTS: The 20 patients who completed KD-IF met the prespecified goals for calorie and carbohydrate restriction. Substantial decreases in leptin and insulin and an increase in uric acid were observed. The SD group, of note, had a lower calorie intake than expected (21 kcal/kg/d instead of 30 kcal/kg/d). Neither quality of life nor cognition were affected by the diet. Low glucose emerged as a significant prognostic parameter in a best responder analysis. CONCLUSION: The strict caloric goals of the ERGO2 trial were tolerated well by patients with recurrent brain cancer. The short diet schedule led to significant metabolic changes with low glucose emerging as a candidate marker of better prognosis. The unexpected lower calorie intake of the control group complicates the interpretation of the results. Clinicaltrials.gov number: NCT01754350; Registration: 21.12.2012.
Assuntos
Jejum , Glioma , Humanos , Recidiva Local de Neoplasia , Estudos Prospectivos , Qualidade de VidaRESUMO
AIMS: Changes in metabolism are known to contribute to tumour phenotypes. If and how metabolic alterations in brain tumours contribute to patient outcome is still poorly understood. Epigenetics impact metabolism and mitochondrial function. The aim of this study is a characterisation of metabolic features in molecular subgroups of isocitrate dehydrogenase mutant (IDHmut) and isocitrate dehydrogenase wildtype (IDHwt) gliomas. METHODS: We employed DNA methylation pattern analyses with a special focus on metabolic genes, large-scale metabolism panel immunohistochemistry (IHC), qPCR-based determination of mitochondrial DNA copy number and immune cell content using IHC and deconvolution of DNA methylation data. We analysed molecularly characterised gliomas (n = 57) for in depth DNA methylation, a cohort of primary and recurrent gliomas (n = 22) for mitochondrial copy number and validated these results in a large glioma cohort (n = 293). Finally, we investigated the potential of metabolic markers in Bevacizumab (Bev)-treated gliomas (n = 29). RESULTS: DNA methylation patterns of metabolic genes successfully distinguished the molecular subtypes of IDHmut and IDHwt gliomas. Promoter methylation of lactate dehydrogenase A negatively correlated with protein expression and was associated with IDHmut gliomas. Mitochondrial DNA copy number was increased in IDHmut tumours and did not change in recurrent tumours. Hierarchical clustering based on metabolism panel IHC revealed distinct subclasses of IDHmut and IDHwt gliomas with an impact on patient outcome. Further quantification of these markers allowed for the prediction of survival under anti-angiogenic therapy. CONCLUSION: A mitochondrial signature was associated with increased survival in all analyses, which could indicate tumour subgroups with specific metabolic vulnerabilities.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Metilação de DNA/fisiologia , Glioma/genética , Glioma/metabolismo , Isocitrato Desidrogenase/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Fenótipo , TranscriptomaRESUMO
BACKGROUND: Cerebral radiation injury, including subacute radiation reactions and later stage radiation necrosis, is a severe side effect of brain tumor radiotherapy. A protocol of four infusions of the monoclonal antibody bevacizumab has been shown to be a highly effective treatment. However, bevacizumab is costly and can cause severe complications including thrombosis, bleeding and gastrointestinal perforations. METHODS: We performed a retrospective analysis of patients treated in our clinic for cerebral radiation injury who received only a singular treatment with bevacizumab. Single-shot was defined as a singular administration of bevacizumab without a second administration during an interval of at least 6 weeks. RESULTS: We identified 11 patients who had received a singular administration of bevacizumab to treat cerebral radiation injury. Prior radiation had been administered to treat gliomas (ten patients) or breast cancer brain metastases (one patient). 9 of 10 patients with available MRIs showed a marked reduction of edema at first follow-up. Discontinuation of Dexamethasone was possible in 6 patients and a significant dose reduction could be achieved in all other patients. One patient developed pulmonary artery embolism 2 months after bevacizumab administration. The median time to treatment failure of any cause was 3 months. CONCLUSIONS: Single-shot bevacizumab therefore has meaningful activity in cerebral radiation injury, but durable control is rarely achieved. In patients where a complete protocol of four infusions with bevacizumab is not feasible due to medical contraindications or lack of reimbursement, single-shot bevacizumab treatment may be considered.
Assuntos
Inibidores da Angiogênese/administração & dosagem , Bevacizumab/administração & dosagem , Edema Encefálico/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Encéfalo/patologia , Lesões por Radiação/tratamento farmacológico , Adulto , Idoso , Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Bevacizumab/uso terapêutico , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/etiologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Dexametasona/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Glioma/radioterapia , Glucocorticoides/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Necrose , Estudos Retrospectivos , Resultado do Tratamento , Adulto JovemRESUMO
The peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a master regulator of mitochondrial biogenesis and controls metabolism by coordinating transcriptional events. Here, we interrogated whether PGC-1α is involved in tumor growth and the metabolic flexibility of glioblastoma cells. PGC-1α was expressed in a subset of established glioma cell lines and primary glioblastoma cell cultures. Furthermore, a higher PGC-1α expression was associated with an adverse outcome in the TCGA glioblastoma dataset. Suppression of PGC-1α expression by shRNA in the PGC-1α-positive U343MG glioblastoma line suppressed mitochondrial gene expression, reduced mitochondrial membrane potential, and diminished oxygen as well as glucose consumption, and lactate production. Compatible with the known PGC-1α functions in reactive oxygen species (ROS) metabolism, glioblastoma cells deficient in PGC-1α displayed ROS accumulation, had reduced RNA levels of proteins involved in ROS detoxification, and were more susceptible to death induction by H2O2 compared with control cells. PGC-1αsh cells also had impaired proliferation and migration rates in vitro and displayed less stem cell characteristics. Complementary effects were observed in PGC-1α-low LNT-229 cells engineered to overexpress PGC-1α. In an in vivo xenograft experiment, tumors formed by U343MG PGC-1αsh glioblastoma cells grew much slower than control tumors and were less invasive. Interestingly, the PGC-1α knockdown conferred protection against hypoxia-induced cell death, probably as a result of less active anabolic pathways, and this effect was associated with reduced epidermal growth factor expression and mammalian target of rapamycin signaling. In summary, PGC-1α modifies the neoplastic phenotype of glioblastoma cells toward more aggressive behavior and therefore makes PGC-1α a potential target for anti-glioblastoma therapies.
Assuntos
Glioblastoma/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fenótipo , Linhagem Celular Tumoral , Metabolismo Energético/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Homeostase/genética , Humanos , Mitocôndrias/genética , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Hipóxia Tumoral/genéticaRESUMO
BACKGROUND: The amino acid serine is an important substrate for biosynthesis and redox homeostasis. We investigated whether glioblastoma (GBM) cells are dependent on serine for survival under conditions of the tumour microenvironment. METHODS: Serine availability in GBM cells was modulated pharmacologically, genetically and by adjusting serine and glycine concentrations in the culture medium. Cells were investigated for regulation of serine metabolism, proliferation, sensitivity to hypoxia-induced cell death and redox homeostasis. RESULTS: Hypoxia-induced expression of phosphoglycerate dehydrogenase (PHGDH) and the mitochondrial serine hydroxymethyltransferase (SHMT2) was observed in three of five tested glioma cell lines. Nuclear factor erythroid 2-related factor (Nrf) 2 activation also induced PHGDH and SHMT2 expression in GBM cells. Low levels of endogenous PHGDH as well as PHGDH gene suppression resulted in serine dependency for cell growth. Pharmacological inhibition of PHGDH with CBR-5884 reduced proliferation and sensitised cells profoundly to hypoxia-induced cell death. This effect was accompanied by an increase in reactive oxygen species and a decrease in the NADPH/NADP+ ratio. Similarly, hypoxia-induced cell death was enhanced by PHGDH gene suppression and reduced by PHGDH overexpression. CONCLUSIONS: Serine facilitates adaptation of GBM cells to conditions of the tumour microenvironment and its metabolism could be a plausible therapeutic target.
Assuntos
Glioblastoma/metabolismo , Glicina Hidroximetiltransferase/genética , Fator 2 Relacionado a NF-E2/genética , Fosfoglicerato Desidrogenase/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Homeostase/efeitos dos fármacos , Humanos , Oxirredução/efeitos dos fármacos , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Microambiente Tumoral/efeitos dos fármacosRESUMO
BACKGROUND: Despite significant advances in the understanding of glioblastoma genetics and biology, survival is still poor. Hypoxia and nutrient depletion in the tumour microenvironment induce adaptive signalling and metabolic responses, which can influence sensitivity to therapeutic regimens. DNA damage-inducible transcript 4 (DDIT4) is a protein induced by hypoxia and in response to DNA stress. Mechanistically, DDIT4 inhibits mammalian target of rapamycin complex 1 (mTORC1) signalling by activation of the tuberous sclerosis 1/2 (TSC1/2) complex. METHODS: Using short hairpin RNA-mediated gene suppression as well as doxycycline-regulated gene induction, we developed a glioblastoma cell model to study effects of DDIT4 under conditions of the glioblastoma microenvironment and therapy. RESULTS: We found an intact DDIT4-mTORC1 signalling axis in human glioblastoma cells that was inducible by hypoxia. Temozolomide and radiotherapy also induced DDIT4 and repressed mTORC1 activity in some glioblastoma cell lines. DDIT4 gene suppression sensitised glioma cells towards hypoxia-induced cell death, while DDIT4 overexpression protected them. Additionally, in clonogenic survival analyses, DDIT4 induction conferred protection from radiotherapy and temozolomide, while DDIT4 gene suppression sensitised cells. CONCLUSIONS: We identified DDIT4 as a cell-intrinsic regulator for adaptive responses and therapy resistance in glioblastoma cells which may interfere with cell death induction by temozolomide, radiotherapy or hypoxia by inhibiting mTORC1 activity.
Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Tolerância a Radiação/genética , Temozolomida/farmacologia , Fatores de Transcrição/genética , Hipóxia Tumoral/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/terapia , Células HEK293 , Células HT29 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Microambiente TumoralRESUMO
OBJECTIVE: Novel treatments are needed to control treatment-resistant status epilepticus (SE). We present a summary of clinical cases where oral topiramate (TPM) was used in refractory SE (RSE) and superrefractory SE (SRSE). METHODS: A review of medical records was carried out to detect TPM administration in SE patients treated in Frankfurt and Marburg between 2011 and 2016. The primary outcome question concerned SE resolution after TPM initiation. RESULTS: In total, TPM was used in 106 of 854 patients having a mean age of 67.4 ± 18.1 years, 61 of whom were female (57.5%). The median latency from SE onset to TPM initiation was 8.5 days. Patients with SE had previously failed a median of five other antiepileptic drugs. The median initial TPM dose was 100 mg/d, which was uptitrated to a median maintenance dose of 400 mg/d. Treatment with TPM was continued for a median time of 12 days. TPM was the last drug provided to 42 of 106 (39.6%) patients, with a resultant response attributed to TPM observed in 29 of 106 (27.4%) patients. A response was attributed to TPM in 21 (31.8%) of 66 RSE cases and eight (20%) of 40 SRSE cases. Treatment-emergent adverse events were attributed to TPM usage in two patients, one each with pancreatitis and hyperchloremic acidosis, and in 38 patients (35.8%), hyperammonemia was seen. Thirty-four of these patients received a combination of TPM and valproate and/or phenobarbital. The intrahospital mortality rate was 22.6% (n = 24). SIGNIFICANCE: The rate of SE cessation attributed to TPM treatment (27.4%) represents a relevant response given the late treatment position of TPM and the treatment latency of more than 8 days. Based on these results and in line with the findings of other case series, TPM can be considered an alternative option for treating RSE and SRSE.
Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Topiramato/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do TratamentoRESUMO
Glioblastomas (GBs) frequently display activation of the epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR). mTOR exists as part of two multiprotein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2). In GBs, mTORC1 inhibitors such as rapamycin have performed poorly in clinical trials, and in vitro protect GB cells from nutrient and oxygen deprivation. Next generation ATP-competitive mTOR inhibitors with affinity for both mTOR complexes have been developed, but data exploring their effects on GB metabolism are scarce. In this study, we compared the ATP-competitive mTORC1/2 inhibitors torin2, INK-128 and NVP-Bez235 to the allosteric mTORC1 inhibitor rapamycin under conditions that mimic the glioma microenvironment. In addition to inhibiting mTORC2 signaling, INK-128 and NVP-Bez235 more effectively blocked mTORC1 signaling and prompted a stronger cell growth inhibition, partly by inducing cell cycle arrest. However, under hypoxic and nutrient-poor conditions mTORC1/2 inhibitors displayed even stronger cytoprotective effects than rapamycin by reducing oxygen and glucose consumption. Thus, therapies that arrest proliferation and inhibit anabolic metabolism must be expected to improve energy homeostasis of tumor cells. These results mandate caution when treating physiologically or therapeutically induced hypoxic GBs with mTOR inhibitors.
Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Benzoxazóis/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Imidazóis/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Naftiridinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
Glioblastomas are characterized by fast uncontrolled growth leading to hypoxic areas and necrosis. Signalling from EGFR via mammalian target of rapamycin complex 1 (mTORC1) is a major driver of cell growth and proliferation and one of the most commonly altered signalling pathways in glioblastomas. Therefore, epidermal growth factor receptor and mTORC1 signalling are plausible therapeutic targets and clinical trials with inhibitors are in progress. However, we have previously shown that epidermal growth factor receptor and mTORC1 inhibition triggers metabolic changes leading to adverse effects under the conditions of the tumour microenvironment by protecting from hypoxia-induced cell death. We hypothesized that conversely mTORC1 activation sensitizes glioma cells to hypoxia-induced cell death. As a model for mTORC1 activation we used gene suppression of its physiological inhibitor TSC2 (TSC2sh). TSC2sh glioma cells showed increased sensitivity to hypoxia-induced cell death that was accompanied by an earlier ATP depletion and an increase in reactive oxygen species. There was no difference in extracellular glucose consumption but an altered intracellular metabolic profile with an increase of intermediates of the pentose phosphate pathway. Mechanistically, mTORC1 upregulated the first and rate limiting enzyme of the pentose phosphate pathway, G6PD. Furthermore, an increase in oxygen consumption in TSC2sh cells was detected. This appeared to be due to higher transcription rates of genes involved in mitochondrial respiratory function including PPARGC1A and PPARGC1B (also known as PGC-1α and -ß). The finding that mTORC1 activation causes an increase in oxygen consumption and renders malignant glioma cells susceptible to hypoxia and nutrient deprivation could help identify glioblastoma patient cohorts more likely to benefit from hypoxia-inducing therapies such as the VEGFA-targeting antibody bevacizumab in future clinical evaluations.
Assuntos
Morte Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/genética , Glioma/patologia , Glucose/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Ácido Láctico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Mutação/genética , Consumo de Oxigênio , PTEN Fosfo-Hidrolase/genética , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Cancer metabolism is characterized by extensive glucose consumption through aerobic glycolysis. No effective therapy exploiting this cancer trait has emerged so far, in part, due to the substantial side effects of the investigated drugs. In this study, we examined the side effects of a combination of isocaloric ketogenic diet (KD) with the glycolysis inhibitor 2-deoxyglucose (2-DG). Two groups of eight athymic nude mice were either fed a standard diet (SD) or a caloric unrestricted KD with a ratio of 4 g fat to 1 g protein/carbohydrate. 2-DG was investigated in commonly employed doses of 0.5 to 4 g/kg and up to 8 g/kg. Ketosis was achieved under KD (ketone bodies: SD 0.5 ± 0.14 mmol/L, KD 1.38 ± 0.28 mmol/L, p < 0.01). The intraperitoneal application of 4 g/kg of 2-DG caused a significant increase in blood glucose, which was not prevented by KD. Sedation after the 2-DG treatment was observed and a behavioral test of spontaneous motion showed that KD reduced the sedation by 2-DG (p < 0.001). A 2-DG dose escalation to 8 g/kg was lethal for 50% of the mice in the SD and for 0% of the mice in the KD group (p < 0.01). A long-term combination of KD and an oral 1 or 2 g 2-DG/kg was well-tolerated. In conclusion, KD reduces the sedative effects of 2-DG and dramatically increases the maximum tolerated dose of 2-DG. A continued combination of KD and anti-glycolytic therapy is feasible. This is, to our knowledge, the first demonstration of increased tolerance to glycolysis inhibition by KD.
Assuntos
Antimetabólitos/efeitos adversos , Desoxiglucose/efeitos adversos , Dieta Cetogênica/métodos , Animais , Antimetabólitos/administração & dosagem , Glicemia/metabolismo , Desoxiglucose/administração & dosagem , Feminino , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Corpos Cetônicos/metabolismo , Cetose/etiologia , Cetose/metabolismo , Camundongos Nus , Neoplasias/metabolismoRESUMO
Inducible gene expression is an important tool in molecular biology research to study protein function. Most frequently, the antibiotic doxycycline is used for regulation of so-called tetracycline (Tet)-inducible systems. In contrast to stable gene overexpression, these systems allow investigation of acute and reversible effects of cellular protein induction. Recent reports have already called for caution when using Tet-inducible systems as the employed antibiotics can disturb mitochondrial function and alter cellular metabolism by interfering with mitochondrial translation. Reprogramming of energy metabolism has lately been recognized as an important emerging hallmark of cancer and is a central focus of cancer research. Therefore, the scope of this study was to systematically analyze dose-dependent metabolic effects of doxycycline on a panel of glioma cell lines with concomitant monitoring of gene expression from Tet-inducible systems. We report that doxycycline doses commonly used with inducible expression systems (0.01â»1 µg/mL) substantially alter cellular metabolism: Mitochondrial protein synthesis was inhibited accompanied by reduced oxygen and increased glucose consumption. Furthermore, doxycycline protected human glioma cells from hypoxia-induced cell death. An impairment of cell growth was only detectable with higher doxycycline doses (10 µg/mL). Our findings describe settings where doxycycline exerts effects on eukaryotic cellular metabolism, limiting the employment of Tet-inducible systems.
Assuntos
Doxiciclina/farmacologia , Glioma/metabolismo , Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glucose/metabolismo , Humanos , Hipóxia/genética , Mitocôndrias/genética , Substâncias Protetoras/farmacologia , Inibidores da Síntese de Proteínas/farmacologiaRESUMO
Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics, and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. This Part II includes the experimental and translational approaches and a discussion of the future perspectives, while the diagnostic methods, EEG network analysis, biomarkers, and personalized treatment approaches were addressed in Part I [1].
Assuntos
Biomarcadores , Encéfalo/patologia , Epilepsia/terapia , Medicina de Precisão , Pesquisa Translacional Biomédica , Anticonvulsivantes/uso terapêutico , Barreira Hematoencefálica , Lesões Encefálicas/patologia , Epigenômica , Epilepsia/diagnóstico , Epilepsia/genética , Variação Genética , Humanos , Pesquisa Translacional Biomédica/tendênciasRESUMO
Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. Part I includes the clinical phenotyping and diagnostic methods, EEG network-analysis, biomarkers, and personalized treatment approaches. In Part II, experimental and translational approaches will be discussed (Bauer et al., 2017) [1].