Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(51): e2205301, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36319465

RESUMO

Flexible intelligent materials are desired to effectively regulate their own deformation and accurately sense their immediate morphology at the same time. Graphene foam is an attractive material for strain sensing and electrical/thermal performance control due to its outstanding mechanical, electrical, and thermal properties. However, graphene-foam-based materials with both strain sensing and deformation control capabilities are rarely reported. Here, a multiscale design of graphene foam with a single-layer-graphene-dominated microstructure and resilient 3D network architecture, which leads to exceptional strain sensing performance as well as modulation ability of the electrical and thermal conductivity for shape memory polymers, is reported. The graphene foams exhibit a strain detection limit of 0.033%, a rapid response of 53 ms, long-term stability over 10 000 cycles, significant thermoacoustic effect, and great heat-generation and heat-diffusion ability. By combining these advantages, an electro-activated shape-memory composite that is capable of monitoring its own shape state during its morphing process, is demonstrated.

2.
Micromachines (Basel) ; 13(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36295941

RESUMO

Shape memory polymers (SMPs) have gained increasing attention as intelligent morphing materials. However, due to the inherent electrical insulation and poor thermal conductivity of polymers, deformation and temperature control of SMPs usually require external heating devices, bringing about design inconveniences and fragility of interfaces. Herein, we report a shape memory composite that integrates reliable temperature and shape control functions into the interior. The composite is comprised of resin-based SMP and three-dimensional interconnected graphene foam (3DGF), exhibiting a high recovery rate and thermal/electrical conductivity. With only 0.26 wt% of graphene foam, the composite can improve electrical conductivity by 15 orders of magnitude, thermal conductivity by 180%, tensile strength by 64.8%, and shape recovery speed by 154%. Using a very simple Joule heating scheme, decimeter-sized samples of the composite deformed to their preset shapes in less than 10 s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA