Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 32(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28960787

RESUMO

The objective of the present study was to characterize the role of novel resveratrol (Res) analogs: 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1, 2-diol} (HPIMBD) and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD) as potent antioxidants against breast cancer. Non-neoplastic breast epithelial cell lines MCF-10A and MCF-10F were treated with 17ß-estradiol (E2), Res, HPIMBD, and TIMBD for up to 72 h. mRNA and protein levels of antioxidant genes, superoxide dismutase 3 (SOD3) and N-quinoneoxidoreductase-1 (NQO1) and transcription factors, nuclear factor erythroid 2-related factor (Nrf) 1, 2 and 3 were quantified after the above treatments. Generation of reactive oxygen species (ROS) was measured by CM-H2-DCFDA and oxidative-DNA damage was determined by measuring 8-hydroxy-2-deoxyguanosine (8-OHdG). HPIMBD and TIMBD scavenged cellular ROS production, attenuated oxidative DNA damage, increased mRNA and protein expression levels of SOD3 and NQO1 and activated Nrf signaling pathway. Our studies demonstrate that HPIMBD and TIMBD have the potential as novel antioxidants to prevent development of breast cancer.


Assuntos
Anticarcinógenos/metabolismo , Antioxidantes/metabolismo , Neoplasias da Mama/prevenção & controle , Mama/metabolismo , Catecóis/metabolismo , Bases de Schiff/metabolismo , Estilbenos/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Anticarcinógenos/efeitos adversos , Antioxidantes/efeitos adversos , Mama/citologia , Mama/patologia , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Catecóis/efeitos adversos , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Suplementos Nutricionais/efeitos adversos , Indução Enzimática , Estradiol/efeitos adversos , Feminino , Humanos , NAD(P)H Desidrogenase (Quinona)/química , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Bases de Schiff/efeitos adversos , Transdução de Sinais , Estilbenos/efeitos adversos , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
2.
Toxicol Appl Pharmacol ; 301: 1-13, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26970359

RESUMO

Breast cancer is a public health concern worldwide. Prolonged exposure to estrogens has been implicated in the development of breast neoplasms. Epidemiologic and experimental evidence suggest a chemopreventive role of phytoestrogens in breast cancers. Resveratrol, a naturally occurring phytoestrogen, has been shown to have potent anti-cancer properties. However, poor efficacy and bioavailability have prevented the use of resveratrol in clinics. In order to address these problems, we have synthesized a combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the proliferation of breast cancer cells. We have recently shown that 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), has better anti-cancer properties than resveratrol and any other resveratrol analog we have synthesized so far. The objective of this study was to investigate the regulation of estrogen receptors (ERs) α and ß by TIMBD in breast cancer cell lines. We demonstrate that TIMBD significantly induces the mRNA and protein expression levels of ERß and inhibits that of ERα. TIMBD inhibits mRNA and protein expression levels of oncogene c-Myc, and cell cycle protein cyclin D1, which are important regulators of cellular proliferation. TIMBD significantly induces protein expression levels of tumor suppressor genes p53 and p21 in MCF-7 cells. TIMBD inhibits c-Myc in an ERß-dependent fashion in MCF-10A and ERß1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this analog. ERß plays a partial role in inhibition of proliferation by TIMBD while ERα overexpression does not significantly affect TIMBD's inhibition.


Assuntos
Antineoplásicos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estilbenos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Humanos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Resveratrol
3.
Carcinogenesis ; 35(8): 1872-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24894866

RESUMO

The importance of estrogens in the etiology of breast cancer is widely recognized. Estrogen-induced oxidative stress has been implicated in this carcinogenic process. Resveratrol (Res), a natural antioxidant phytoestrogen has chemopreventive effects against a variety of illnesses including cancer. The objective of the present study was to characterize the mechanism(s) of Res-mediated protection against estrogen-induced breast carcinogenesis. Female August Copenhagen Irish rats were treated with 17ß-estradiol (E2), Res and Res + E2 for 8 months. Cotreatment of rats with Res and E2 inhibited E2-mediated proliferative changes in mammary tissues and significantly increased tumor latency and reduced E2-induced breast tumor development. Resveratrol treatment alone or in combination with E2 significantly upregulated expression of nuclear factor erythroid 2-related factor 2 (NRF2) in mammary tissues. Expression of NRF2-regulated antioxidant genes NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage was increased in Res- and Res + E2-treated mammary tissues. Resveratrol also prevented E2-mediated inhibition of detoxification genes AOX1 and FMO1. Inhibition of E2-mediated alterations in NRF2 promoter methylation and expression of NRF2 targeting miR-93 after Res treatment indicated Res-mediated epigenetic regulation of NRF2 during E2-induced breast carcinogenesis. Resveratrol treatment also induced apoptosis and inhibited E2-mediated increase in DNA damage in mammary tissues. Increased apoptosis and decreased DNA damage, cell migration, colony and mammosphere formation in Res- and Res + E2-treated MCF-10A cells suggested a protective role of Res against E2-induced mammary carcinogenesis. Small-interfering RNA-mediated silencing of NRF2 inhibited Res-mediated preventive effects on the colony and mammosphere formation. Taken together, these results suggest that Res inhibits E2-induced breast carcinogenesis via induction of NRF2-mediated protective pathways.


Assuntos
Transformação Celular Neoplásica/patologia , Estrogênios/toxicidade , Neoplasias Mamárias Experimentais/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Anticarcinógenos/farmacologia , Antioxidantes , Apoptose/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos Endogâmicos ACI , Ratos Endogâmicos , Reação em Cadeia da Polimerase em Tempo Real , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
4.
J Biochem Mol Toxicol ; 28(12): 529-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25130429

RESUMO

The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17ß-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and NAD(P)H: quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17ß-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways.


Assuntos
Antioxidantes/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias da Mama , Estradiol/efeitos adversos , Estrogênios/efeitos adversos , NAD(P)H Desidrogenase (Quinona)/biossíntese , Proteínas de Neoplasias/metabolismo , Superóxido Dismutase/biossíntese , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Linhagem Celular Tumoral , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
5.
Carcinogenesis ; 34(5): 1165-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23492819

RESUMO

MicroRNAs (miRNA) are small non-coding RNAs that regulate the expression of approximately 60% of all human genes and play important roles in disease processes. Recent studies have demonstrated a link between dysregulated expression of miRNAs and breast carcinogenesis. Long-term estrogen exposure is implicated in development of human breast cancers, yet underlying mechanisms remain elusive. We have recently demonstrated that antioxidant vitamin C (vit C) prevents estrogen-induced breast tumor development. In this study, we investigated the role of vit C in the regulation of microRNA-93 (miR-93) and its target gene(s) in a rat model of mammary carcinogenesis. Female August Copenhagen Irish (ACI) rats were treated with vit C in the presence or absence of 17ß-estradiol (E2) for 8 months. We demonstrate an increased expression of the miR-93 in E2-treated mammary tissues and in human breast cell lines and vit C treatment reverted E2-mediated increase in miR-93 levels. MiRNA target prediction programs suggest one of the target genes of miR-93 to be nuclear factor erythroid 2-related factor 2 (NRF2). In contrast with miR-93 expression, NRF2 protein expression was significantly decreased in E2-treated mammary tissues, mammary tumors, and in breast cancer cell lines, and its expression was significantly increased after vit C treatment. Ectopic expression of miR-93 decreased protein expression of NRF2 and NRF2-regulated genes. Furthermore, miR-93 decreased apoptosis, increased colony formation, mammosphere formation, cell migration and DNA damage in breast epithelial cells, whereas silencing of miR-93 in these cells inhibited these carcinogenic processes. Taken together, our findings suggest an oncogenic potential of miR-93 during E2-induced breast carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ácido Ascórbico/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Transformação Celular Neoplásica/metabolismo , Dano ao DNA , Estradiol/farmacologia , Estrogênios/efeitos adversos , Feminino , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Endogâmicos ACI , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
6.
BMC Cancer ; 13: 253, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23697596

RESUMO

BACKGROUND: Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17ß-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. METHODS: Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. RESULTS: The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. CONCLUSIONS: Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1.


Assuntos
Antioxidantes/farmacologia , Dano ao DNA , DNA Glicosilases/biossíntese , Estrogênios/toxicidade , Neoplasias Mamárias Experimentais/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , 8-Hidroxi-2'-Desoxiguanosina , Animais , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Dano ao DNA/fisiologia , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Desoxiguanosina/biossíntese , Feminino , Humanos , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , Ratos , Ratos Endogâmicos ACI , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
7.
Bioorg Med Chem Lett ; 23(3): 635-40, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23273518

RESUMO

Novel Aza-resveratrol analogs were synthesized, structurally characterized and evaluated for cytotoxic activity against MDA-MB-231 and T47D breast cancer cell lines, which exhibited superior inhibitory activity than parent resveratrol compound. The binding mechanism of these compounds with estrogen receptor-α was rationalized by molecular docking studies which indicated additional hydrogen binding interactions and tight binding in the protein cavity. Induction of Beclin-1 protein expression in breast cancer cell lines after treatment with newly synthesized resveratrol analogs indicated inhibition of growth of these cell lines through autophagy. The study highlighted the advantage of introducing the imino-linkage in resveratrol motif in enhancing the anticancer potential of resveratrol suggesting that these analogs can serve as better therapeutic agents against breast cancer and can provide starting point for building more potent analogs in future.


Assuntos
Compostos Aza/síntese química , Compostos Aza/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Estilbenos/síntese química , Estilbenos/farmacologia , Compostos Aza/química , Compostos Aza/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Resveratrol , Estilbenos/química , Estilbenos/uso terapêutico
8.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32780726

RESUMO

New strategies are needed to enhance the efficacy of anti-programmed cell death protein antibody (anti-PD-1 Ab) in cancer. Here, we report that inhibiting palmitoyl-protein thioesterase 1 (PPT1), a target of chloroquine derivatives like hydroxychloroquine (HCQ), enhances the antitumor efficacy of anti-PD-1 Ab in melanoma. The combination resulted in tumor growth impairment and improved survival in mouse models. Genetic suppression of core autophagy genes, but not Ppt1, in cancer cells reduced priming and cytotoxic capacity of primed T cells. Exposure of antigen-primed T cells to macrophage-conditioned medium derived from macrophages treated with PPT1 inhibitors enhanced melanoma-specific killing. Genetic or chemical Ppt1 inhibition resulted in M2 to M1 phenotype switching in macrophages. The combination was associated with a reduction in myeloid-derived suppressor cells in the tumor. Ppt1 inhibition by HCQ, or DC661, induced cyclic GMP-AMP synthase/stimulator of interferon genes/TANK binding kinase 1 pathway activation and the secretion of interferon-ß in macrophages, the latter being a key component for augmented T cell-mediated cytotoxicity. Genetic Ppt1 inhibition produced similar findings. These data provide the rationale for this combination in melanoma clinical trials and further investigation in other cancers.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidroxicloroquina/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Tioléster Hidrolases/antagonistas & inibidores , Animais , Anticorpos/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/uso terapêutico , Hidroxicloroquina/administração & dosagem , Hidroxicloroquina/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/farmacologia , Interferon beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Células RAW 264.7 , Linfócitos T/imunologia , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Células Tumorais Cultivadas
9.
Cancer Discov ; 9(2): 220-229, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30442709

RESUMO

Clinical trials repurposing lysosomotropic chloroquine (CQ) derivatives as autophagy inhibitors in cancer demonstrate encouraging results, but the underlying mechanism of action remains unknown. Here, we report a novel dimeric CQ (DC661) capable of deacidifying the lysosome and inhibiting autophagy significantly better than hydroxychloroquine (HCQ). Using an in situ photoaffinity pulldown strategy, we identified palmitoyl-protein thioesterase 1 (PPT1) as a molecular target shared across monomeric and dimeric CQ derivatives. HCQ and Lys05 also bound to and inhibited PPT1 activity, but only DC661 maintained activity in acidic media. Knockout of PPT1 in cancer cells using CRISPR/Cas9 editing abrogates autophagy modulation and cytotoxicity of CQ derivatives, and results in significant impairment of tumor growth similar to that observed with DC661. Elevated expression of PPT1 in tumors correlates with poor survival in patients in a variety of cancers. Thus, PPT1 represents a new target in cancer that can be inhibited with CQ derivatives. SIGNIFICANCE: This study identifies PPT1 as the previously unknown lysosomal molecular target of monomeric and dimeric CQ derivatives. Genetic suppression of PPT1 impairs tumor growth, and PPT1 levels are elevated in cancer and associated with poor survival. These findings provide a strong rationale for targeting PPT1 in cancer. This article is highlighted in the In This Issue feature, p. 151.


Assuntos
Antimaláricos/farmacologia , Biomarcadores Tumorais/metabolismo , Cloroquina/farmacologia , Proteínas de Membrana/metabolismo , Neoplasias/patologia , Tioléster Hidrolases/metabolismo , Aminoquinolinas/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Proteínas de Membrana/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Poliaminas/farmacologia , Prognóstico , Taxa de Sobrevida , Tioléster Hidrolases/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Discov ; 7(11): 1266-1283, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28899863

RESUMO

Lysosomes serve dual roles in cancer metabolism, executing catabolic programs (i.e., autophagy and macropinocytosis) while promoting mTORC1-dependent anabolism. Antimalarial compounds such as chloroquine or quinacrine have been used as lysosomal inhibitors, but fail to inhibit mTOR signaling. Further, the molecular target of these agents has not been identified. We report a screen of novel dimeric antimalarials that identifies dimeric quinacrines (DQ) as potent anticancer compounds, which concurrently inhibit mTOR and autophagy. Central nitrogen methylation of the DQ linker enhances lysosomal localization and potency. An in situ photoaffinity pulldown identified palmitoyl-protein thioesterase 1 (PPT1) as the molecular target of DQ661. PPT1 inhibition concurrently impairs mTOR and lysosomal catabolism through the rapid accumulation of palmitoylated proteins. DQ661 inhibits the in vivo tumor growth of melanoma, pancreatic cancer, and colorectal cancer mouse models and can be safely combined with chemotherapy. Thus, lysosome-directed PPT1 inhibitors represent a new approach to concurrently targeting mTORC1 and lysosomal catabolism in cancer.Significance: This study identifies chemical features of dimeric compounds that increase their lysosomal specificity, and a new molecular target for these compounds, reclassifying these compounds as targeted therapies. Targeting PPT1 blocks mTOR signaling in a manner distinct from catalytic inhibitors, while concurrently inhibiting autophagy, thereby providing a new strategy for cancer therapy. Cancer Discov; 7(11); 1266-83. ©2017 AACR.See related commentary by Towers and Thorburn, p. 1218This article is highlighted in the In This Issue feature, p. 1201.


Assuntos
Lisossomos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Tioléster Hidrolases/antagonistas & inibidores , Animais , Antimaláricos/administração & dosagem , Antineoplásicos/administração & dosagem , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/administração & dosagem , Humanos , Lisossomos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Terapia de Alvo Molecular , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tioléster Hidrolases/genética
12.
Oncotarget ; 7(32): 51747-51762, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27351134

RESUMO

We have recently shown that 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1,2-diol} (HPIMBD) and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), novel analogs of resveratrol (Res), selectively inhibited the proliferation of breast cancer cells. In the current study, we tested HPIMBD and TIMBD individually in combination with tamoxifen (Tam) for inhibition of growth of breast cancer cells. Tamoxifen was first tested on non-neoplastic breast epithelial cell lines and its dose that does not inhibit their growth was determined. A combination of this low dose of Tam with either of the Res analogs HPIMBD or TIMBD, resulted in synergistic inhibition of proliferation of breast cancer cells. Both estrogen receptor (ER)-positive and negative breast cancer cell lines responded to the combination. The combination resulted in a substantial decrease in IC50 values of Res analogs in all breast cancer cell lines tested. Mechanistic studies showed a synergistic increase in apoptosis and autophagy genes (beclin-1 and LC3BII/I) with the combination in ER-negative MDA-MB-231 cells. In ER-positive MCF-7 and T47D cells, the mechanism of synergy was found to be inhibition of expression of ERα and oncogene c-Myc. The combination treatment had a synergistic effect in inhibiting the colony forming and spheroid forming ability of cancer cells. Taken together, our findings indicate that a combination of Tam and Res analogs HPIMBD or TIMBD represents a novel approach to enhancing the use of Tam in therapy for breast cancers. Considering the urgent need for novel therapeutic strategies to treat ER-negative breast cancers and overcoming resistance in ER-positive cancers, this combinatorial approach is worthy of continued investigation.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/patologia , Catecóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Bases de Schiff/farmacologia , Estilbenos/farmacologia , Tamoxifeno/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Resveratrol , Estilbenos/química
13.
J Steroid Biochem Mol Biol ; 144 Pt B: 500-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25242450

RESUMO

Breast cancer is the second leading cause of death among women in the United States. Estrogens have been implicated as major risk factors in the development of breast neoplasms. Recent epidemiologic studies have suggested a protective role of phytoestrogens in prevention of breast and other cancers. Resveratrol, a naturally occurring phytoestrogen found notably in red grapes, berries and peanuts, has been shown to possess potent anti-cancer properties. However, the poor efficacy of resveratrol has prevented its use in a clinical setting. In order to improve the efficacy of resveratrol, we have synthesized a small combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the growth of breast cancer cell lines. We have recently shown that one of the synthesized analogs, 4-(E)-{(4-hydroxyphenylimino)-methylbenzene,1,2-diol} (HPIMBD), has better anti-cancer properties than resveratrol. The objective of this study was to investigate the differential regulation of estrogen receptors (ERs) α and ß as a potential mechanism of inhibition of breast cancer by HPIMBD. Estrogen receptors α and ß have been shown to have opposing roles in cellular proliferation. Estrogen receptor α mediates the proliferative responses of estrogens while ERß plays an anti-proliferative and pro-apoptotic role. We demonstrate that HPIMBD significantly induces the expression of ERß and inhibits the expression of ERα. HPIMBD also inhibits the protein expression levels of oncogene c-Myc and cell cycle protein cyclin D1, genes downstream to ERα and important regulators of cell cycle, and cellular proliferation. HPIMBD significantly induces protein expression levels of tumor suppressors p53 and p21 in MCF-7 cells. Additionally, HPIMBD inhibits c-Myc in an ERß-dependent fashion in MCF-10A and ERß1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this novel compound. Molecular docking studies confirm higher affinity for binding of HPIMBD in the ERß cavity. Thus, HPIMBD, a novel azaresveratrol analog may inhibit the proliferation of breast cancer cells by differentially modulating the expressions of ERs α and ß.


Assuntos
Antineoplásicos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Bases de Schiff/farmacologia , para-Aminobenzoatos/farmacologia , Catecóis , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Resveratrol , Estilbenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA