Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Pharmacol ; 104(5): 195-202, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595966

RESUMO

M4 muscarinic receptors are highly expressed in the striatum and cortex, brain regions that are involved in diseases such as Parkinson's disease, schizophrenia, and dystonia. Despite potential therapeutic advantages of specifically targeting the M4 receptor, it has been historically challenging to develop highly selective ligands, resulting in undesired off-target activity at other members of the muscarinic receptor family. Recently, we have reported first-in-class, potent, and selective M4 receptor antagonists. As an extension of that work, we now report the development and characterization of a radiolabeled M4 receptor antagonist, [3H]VU6013720, with high affinity (pKd of 9.5 ± 0.2 at rat M4, 9.7 at mouse M4, and 10 ± 0.1 at human M4 with atropine to define nonspecific binding) and no significant binding at the other muscarinic subtypes. Binding assays using this radioligand in rodent brain tissues demonstrate loss of specific binding in Chrm4 knockout animals. Dissociation kinetics experiments with various muscarinic ligands show differential effects on the dissociation of [3H]VU6013720 from M4 receptors, suggesting a binding site that is overlapping but may be distinct from the orthosteric site. Overall, these results demonstrate that [3H]VU6013720 is the first highly selective antagonist radioligand for the M4 receptor, representing a useful tool for studying the basic biology of M4 as well for the support of M4 receptor-based drug discovery. SIGNIFICANCE STATEMENT: This manuscript describes the development and characterization of a novel muscarinic (M) acetylcholine subtype 4 receptor antagonist radioligand, [3H]VU6013720. This ligand binds to or overlaps with the acetylcholine binding site, providing a highly selective radioligand for the M4 receptor that can be used to quantify M4 protein expression in vivo and probe the selective interactions of acetylcholine with M4 versus the other members of the muscarinic receptor family.


Assuntos
Acetilcolina , Receptores Muscarínicos , Ratos , Humanos , Camundongos , Animais , Acetilcolina/metabolismo , Receptores Muscarínicos/metabolismo , Receptor Muscarínico M4/metabolismo , Atropina , Ligantes , Colinérgicos , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/metabolismo , Receptor Muscarínico M2/metabolismo , Ensaio Radioligante , Receptor Muscarínico M1/metabolismo
2.
Bioorg Med Chem Lett ; 56: 128479, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838649

RESUMO

In this manuscript, we report a series of chiral 6-azaspiro[2.5]octanes and related spirocycles as highly potent and selective antagonists of the muscarinic acetylcholine receptor subtype 4 (mAChR4). Chiral separation and subsequent X-ray crystallographic analysis of early generation analogs revealed the R enantiomer to possess excellent human and rat M4 potency, and further structure-activity relationship (SAR) studies on this chiral scaffold led to the discovery of VU6015241 (compound 19). Compound 19 is characterized by high M4 potency and selectivity across multiple species, excellent aqueous solubility, and moderate brain exposure in rodents after intraperitoneal administration.


Assuntos
Antagonistas Muscarínicos/farmacologia , Receptor Muscarínico M4/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Antagonistas Muscarínicos/síntese química , Antagonistas Muscarínicos/química , Receptor Muscarínico M4/metabolismo , Relação Estrutura-Atividade
3.
Hum Mol Genet ; 25(10): 1990-2004, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26936821

RESUMO

Rett syndrome (RS) is a neurodevelopmental disorder that shares many symptomatic and pathological commonalities with idiopathic autism. Alterations in protein synthesis-dependent synaptic plasticity (PSDSP) are a hallmark of a number of syndromic forms of autism; in the present work, we explore the consequences of disruption and rescue of PSDSP in a mouse model of RS. We report that expression of a key regulator of synaptic protein synthesis, the metabotropic glutamate receptor 5 (mGlu5) protein, is significantly reduced in both the brains of RS model mice and in the motor cortex of human RS autopsy samples. Furthermore, we demonstrate that reduced mGlu5 expression correlates with attenuated DHPG-induced long-term depression in the hippocampus of RS model mice, and that administration of a novel mGlu5 positive allosteric modulator (PAM), termed VU0462807, can rescue synaptic plasticity defects. Additionally, treatment of Mecp2-deficient mice with VU0462807 improves motor performance (open-field behavior and gait dynamics), corrects repetitive clasping behavior, as well as normalizes cued fear-conditioning defects. Importantly, due to the rationale drug discovery approach used in its development, our novel mGlu5 PAM improves RS phenotypes and synaptic plasticity defects without evoking the overt adverse effects commonly associated with potentiation of mGlu5 signaling (i.e. seizures), or affecting cardiorespiratory defects in RS model mice. These findings provide strong support for the continued development of mGlu5 PAMs as potential therapeutic agents for use in RS, and, more broadly, for utility in idiopathic autism.


Assuntos
Transtorno Autístico/genética , Receptor de Glutamato Metabotrópico 5/genética , Síndrome de Rett/genética , Convulsões/genética , Adulto , Regulação Alostérica/genética , Animais , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/patologia , Autopsia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout , Córtex Motor/efeitos dos fármacos , Córtex Motor/patologia , Plasticidade Neuronal/efeitos dos fármacos , Pirazóis/administração & dosagem , Pirimidinonas/administração & dosagem , Receptor de Glutamato Metabotrópico 5/biossíntese , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/patologia , Convulsões/tratamento farmacológico , Convulsões/patologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
4.
Bioorg Med Chem Lett ; 28(12): 2175-2179, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29754948

RESUMO

This letter describes the chemical optimization of a new series of M1 positive allosteric modulators (PAMs) based on a novel benzomorpholine core, developed via iterative parallel synthesis, and culminating in the highly utilized rodent in vivo tool compound, VU0486846 (7), devoid of adverse effect liability. This is the first report of the optimization campaign (SAR and DMPK profiling) that led to the discovery of VU0486846 and details all of the challenges faced in allosteric modulator programs (both steep and flat SAR, as well as subtle structural changes affecting CNS penetration and overall physiochemical and DMPK properties).


Assuntos
Descoberta de Drogas , Morfolinas/farmacologia , Pirazóis/farmacologia , Receptor Muscarínico M1/agonistas , Animais , Células CHO , Cricetulus , Humanos , Estrutura Molecular , Morfolinas/síntese química , Morfolinas/química , Pirazóis/síntese química , Pirazóis/química , Ratos , Relação Estrutura-Atividade
5.
Proc Natl Acad Sci U S A ; 112(4): 1196-201, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583490

RESUMO

Clinical studies have revealed that genetic variations in metabotropic glutamate receptor 3 (mGlu3) affect performance on cognitive tasks dependent upon the prefrontal cortex (PFC) and may be linked to psychiatric conditions such as schizophrenia, bipolar disorder, and addiction. We have performed a series of studies aimed at understanding how mGlu3 influences PFC function and cognitive behaviors. In the present study, we found that activation of mGlu3 can induce long-term depression in the mouse medial PFC (mPFC) in vitro. Furthermore, in vivo administration of a selective mGlu3 negative allosteric modulator impaired learning in the mPFC-dependent fear extinction task. The results of these studies implicate mGlu3 as a major regulator of PFC function and cognition. Additionally, potentiators of mGlu3 may be useful in alleviating prefrontal impairments associated with several CNS disorders.


Assuntos
Comportamento Animal , Cognição , Medo , Depressão Sináptica de Longo Prazo , Córtex Pré-Frontal/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Ratos , Receptores de Glutamato Metabotrópico/genética
6.
Proc Natl Acad Sci U S A ; 112(45): 14078-83, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508634

RESUMO

Mutations that lead to Huntington's disease (HD) result in increased transmission at glutamatergic corticostriatal synapses at early presymptomatic stages that have been postulated to set the stage for pathological changes and symptoms that are observed at later ages. Based on this, pharmacological interventions that reverse excessive corticostriatal transmission may provide a novel approach for reducing early physiological changes and motor symptoms observed in HD. We report that activation of the M4 subtype of muscarinic acetylcholine receptor reduces transmission at corticostriatal synapses and that this effect is dramatically enhanced in presymptomatic YAC128 HD and BACHD relative to wild-type mice. Furthermore, chronic administration of a novel highly selective M4 positive allosteric modulator (PAM) beginning at presymptomatic ages improves motor and synaptic deficits in 5-mo-old YAC128 mice. These data raise the exciting possibility that selective M4 PAMs could provide a therapeutic strategy for the treatment of HD.


Assuntos
Regulação Alostérica/fisiologia , Ácido Glutâmico/metabolismo , Doença de Huntington/tratamento farmacológico , Receptor Muscarínico M4/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/metabolismo , Fluorescência , Doença de Huntington/fisiopatologia , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Teste de Desempenho do Rota-Rod , Transmissão Sináptica/efeitos dos fármacos , Tiofenos/farmacologia , Tiofenos/uso terapêutico
7.
Bioorg Med Chem Lett ; 26(19): 4637-4640, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27575469

RESUMO

This Letter describes the further lead optimization of the CHT inhibitor probe, ML352 (VU0476201), and the development of VU6001221, an improved in vivo tool. A multi-dimensional optimization effort encountered steep SAR, and ultimately, subtle tuning of the electronics of the central phenyl core provided VU6001221, a CHT inhibitor with comparable potency for choline uptake inhibition as ML352, yet improved PK and CNS penetration. Moreover, VU6001221 enabled evaluation, for the first time, of a CHT inhibitor in a standard preclinical rodent cognition model, novel object recognition (NOR). We observed VU6001221 to elicit a dose-responsive increase in NOR, raising the possibility of agonism of synaptic α7 nicotinic ACh receptors by elevated extracellular choline, that if confirmed would represent a novel molecular strategy to enhance cognition.


Assuntos
Benzamidas/farmacologia , Isoxazóis/farmacologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Oxazóis/farmacologia , Piperidinas/farmacologia , Animais , Benzamidas/química , Benzamidas/farmacocinética , Relação Dose-Resposta a Droga , Meia-Vida , Concentração Inibidora 50 , Isoxazóis/química , Isoxazóis/farmacocinética , Oxazóis/química , Oxazóis/farmacocinética , Piperidinas/química , Piperidinas/farmacocinética , Ratos , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 25(22): 5115-20, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26475522

RESUMO

We report the optimization of a series of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from an acyl dihydropyrazolo[1,5-a]pyrimidinone class. Investigation of exocyclic amide transpositions with this unique 5,6-bicyclic core were conducted in attempt to modulate physicochemical properties and identify a suitable backup candidate with a reduced half-life. A potent and selective PAM, 1-(2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyrimidin-4(5H)-yl)ethanone (9a, VU0462807), was identified with superior solubility and efficacy in the acute amphetamine-induced hyperlocomotion (AHL) rat model with a minimum effective dose of 3mg/kg. Attempts to mitigate oxidative metabolism of the western phenoxy of 9a through extensive modification and profiling are described.


Assuntos
Encéfalo/metabolismo , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Pirimidinonas/farmacocinética , Receptor de Glutamato Metabotrópico 5/agonistas , Regulação Alostérica , Animais , Cães , Humanos , Ligantes , Masculino , Atividade Motora/efeitos dos fármacos , Pirazóis/sangue , Pirazóis/síntese química , Pirazóis/isolamento & purificação , Pirazóis/farmacologia , Pirimidinas/sangue , Pirimidinas/síntese química , Pirimidinas/farmacologia , Pirimidinonas/sangue , Pirimidinonas/síntese química , Pirimidinonas/isolamento & purificação , Pirimidinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
9.
Cancer Med ; 13(3): e6812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38239047

RESUMO

BACKGROUND: It has been shown that tumor microenvironment (TME) hydroxyapatite (HAP) is typically associated with many malignancies and plays a role in tumor progression and growth. Additionally, acidosis in the TME has been reported to play a key role in selecting for a more aggressive tumor phenotype, drug resistance and desensitization to immunotherapy for many types of cancers. TME-HAP is an attractive target for tumor detection and treatment development since HAP is generally absent from normal soft tissue. We provide strong evidence that dissolution of hydroxyapatite (HAP) within the tumor microenvironment (TME-HAP) using a novel therapeutic can be used to kill cancer cells both in vitro and in vivo with minimal adverse effects. METHODS: We developed an injectable cation exchange nano particulate sulfonated polystyrene solution (NSPS) that we engineered to dissolve TME-HAP, inducing localized acute alkalosis and inhibition of tumor growth and glucose metabolism. This was evaluated in cell culture using 4T1, MDA-MB-231 triple negative breast cancer cells, MCF10 normal breast cells, and H292 lung cancer cells, and in vivo using orthotopic mouse models of cancer that contained detectable microenvironment HAP including breast (MMTV-Neu, 4T1, and MDA-MB-231), prostate (PC3) and colon (HCA7) cancer using 18 F-NaF for HAP and 18 F-FDG for glucose metabolism with PET imaging. On the other hand, H292 lung tumor cells that lacked detectable microenvironment HAP and MCF10a normal breast cells that do not produce HAP served as negative controls. Tumor microenvironment pH levels following injection of NSPS were evaluated via Chemical Exchange Saturation (CEST) MRI and via ex vivo methods. RESULTS: Within 24 h of adding the small concentration of 1X of NSPS (~7 µM), we observed significant tumor cell death (~ 10%, p < 0.05) in 4T1 and MDA-MB-231 cell cultures that contain HAP but ⟨2% in H292 and MCF10a cells that lack detectable HAP and in controls. Using CEST MRI, we found extracellular pH (pHe) in the 4T1 breast tumors, located in the mammary fat pad, to increase by nearly 10% from baseline before gradually receding back to baseline during the first hour post NSPS administration. in the tumors that contained TME-HAP in mouse models, MMTV-Neu, 4T1, and MDA-MB-231, PC3, and HCA7, there was a significant reduction (p<0.05) in 18 F-Na Fuptake post NSPS treatment as expected; 18 F- uptake in the tumor = 3.8 ± 0.5 %ID/g (percent of the injected dose per gram) at baseline compared to 1.8 ±0.5 %ID/g following one-time treatment with 100 mg/kg NSPS. Of similar importance, is that 18 F-FDG uptake in the tumors was reduced by more than 75% compared to baseline within 24 h of treatment with one-time NSPS which persisted for at least one week. Additionally, tumor growth was significantly slower (p < 0.05) in the mice treated with one-time NSPS. Toxicity showed no evidence of any adverse effects, a finding attributed to the absence of HAP in normal soft tissue and to our therapeutic NSPS having limited penetration to access HAP within skeletal bone. CONCLUSION: Dissolution of TME-HAP using our novel NSPS has the potential to provide a new treatment paradigm to enhance the management of cancer patients with poor prognosis.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Pulmonares , Humanos , Masculino , Animais , Camundongos , Preparações Farmacêuticas , Fluordesoxiglucose F18 , Imunoterapia , Alcanossulfonatos , Glucose , Hidroxiapatitas , Microambiente Tumoral
10.
Drug Metab Dispos ; 41(9): 1703-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821185

RESUMO

Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs possessing varying degrees of agonist activity (ago-PAMs), as well as PAMs devoid of agonist activity. However, previous studies revealed that ago-PAMs can induce seizure activity and behavioral convulsions, whereas pure mGlu5 PAMs do not induce these adverse effects. We recently identified a potent and selective mGlu5 PAM, VU0403602, that was efficacious in reversing amphetamine-induced hyperlocomotion in rats. The compound also induced time-dependent seizure activity that was blocked by coadministration of the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine. Consistent with potential adverse effects induced by ago-PAMs, we found that VU0403602 had significant allosteric agonist activity. Interestingly, inhibition of VU0403602 metabolism in vivo by a pan cytochrome P450 (P450) inactivator completely protected rats from induction of seizures. P450-mediated biotransformation of VU0403602 was discovered to produce another potent ago-PAM metabolite-ligand (M1) of mGlu5. Electrophysiological studies in rat hippocampal slices confirmed agonist activity of both M1 and VU0403602 and revealed that M1 can induce epileptiform activity in a manner consistent with its proconvulsant behavioral effects. Furthermore, unbound brain exposure of M1 was similar to that of the parent compound, VU0403602. These findings indicate that biotransformation of mGlu5 PAMs to active metabolite-ligands may contribute to the epileptogenesis observed after in vivo administration of this class of allosteric receptor modulators.


Assuntos
Receptor de Glutamato Metabotrópico 5/metabolismo , Convulsões/induzido quimicamente , Regulação Alostérica/efeitos dos fármacos , Animais , Astrócitos/enzimologia , Astrócitos/metabolismo , Biotransformação , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Células HEK293 , Hipocampo/enzimologia , Hipocampo/metabolismo , Humanos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Convulsões/metabolismo
11.
JACC Basic Transl Sci ; 8(10): 1379-1388, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094686

RESUMO

Ligands for the serotonin 2B receptor (5-HT2B) have shown potential to treat pulmonary arterial hypertension in preclinical models but cannot be used in humans because of predicted off-target neurological effects. The aim of this study was to develop novel systemically restricted compounds targeting 5-HT2B. Here, we show that mice treated with VU6047534 had decreased RVSP compared with control treatment in both the prevention and intervention studies using Sugen-hypoxia. VU6047534 is a novel 5-HT2B partial agonist that is peripherally restricted and able to both prevent and treat Sugen-hypoxia-induced pulmonary arterial hypertension. We have synthesized and characterized a structurally novel series of 5-HT2B ligands with high potency and selectivity for the 5-HT2B receptor subtype. Next-generation 5-HT2B ligands with similar characteristics, and predicted to be systemically restricted in humans, are currently advancing to investigational new drug-enabling studies.

12.
Mol Pharmacol ; 81(2): 120-33, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22021324

RESUMO

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu(5) PAMs act as pure PAMs, only potentiating mGlu(5) responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu(5)-expressing cell lines. All mGlu(5) PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu(5) pure PAMs that are devoid of detectable agonist activity and structurally related mGlu(5) ago-PAMs that activate mGlu(5) alone in cell lines. Studies of mGlu(5) PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu(5) receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu(5) PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu(5) PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.


Assuntos
Sistema Nervoso Central/fisiologia , Receptores de Glutamato Metabotrópico/agonistas , Regulação Alostérica , Animais , Antipsicóticos , Astrócitos , Linhagem Celular , Sistema Nervoso Central/efeitos dos fármacos , Humanos , Camundongos , Neurônios , Receptor de Glutamato Metabotrópico 5
13.
Mol Pharmacol ; 82(5): 860-75, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22863693

RESUMO

Drug discovery programs increasingly are focusing on allosteric modulators as a means to modify the activity of G protein-coupled receptor (GPCR) targets. Allosteric binding sites are topographically distinct from the endogenous ligand (orthosteric) binding site, which allows for co-occupation of a single receptor with the endogenous ligand and an allosteric modulator that can alter receptor pharmacological characteristics. Negative allosteric modulators (NAMs) inhibit and positive allosteric modulators (PAMs) enhance the affinity and/or efficacy of orthosteric agonists. Established approaches for estimation of affinity and efficacy values for orthosteric ligands are not appropriate for allosteric modulators, and this presents challenges for fully understanding the actions of novel modulators of GPCRs. Metabotropic glutamate receptor 5 (mGlu(5)) is a family C GPCR for which a large array of allosteric modulators have been identified. We took advantage of the many tools for probing allosteric sites on mGlu(5) to validate an operational model of allosterism that allows quantitative estimation of modulator affinity and cooperativity values. Affinity estimates derived from functional assays fit well with affinities measured in radioligand binding experiments for both PAMs and NAMs with diverse chemical scaffolds and varying degrees of cooperativity. We observed modulation bias for PAMs when we compared mGlu(5)-mediated Ca(2+) mobilization and extracellular signal-regulated kinase 1/2 phosphorylation data. Furthermore, we used this model to quantify the effects of mutations that reduce binding or potentiation by PAMs. This model can be applied to PAM and NAM potency curves in combination with maximal fold-shift data to derive reliable estimates of modulator affinities.


Assuntos
Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica , Sítio Alostérico , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Mutação Puntual , Ensaio Radioligante , Ratos , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Relação Estrutura-Atividade
14.
Synapse ; 65(11): 1173-80, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21584868

RESUMO

UNLABELLED: In the previous work, we reported a method that utilized imaging data collected from 60 to 120 min following [(18) F]fallypride administration to estimate the distribution volume ratio DVR' (DVR' ∝ DVR; DVR = 1 + BP(ND) , where BP(ND) is a measure of receptor density, DA D2 in this case). In this work, we use this method to assess the effects of isoflurane anesthesia on [(18) F]fallypride DVR'. METHODS: Rats were injected with [(18) F]fallypride either unconsciously under ∼1.5% isoflurane via the tail vein (Group 1) or consciously via a catheter inserted either in the jugular vein (Group 2) or the tail vein (Group 3). After about 1 h of free access to food and water the rats were anesthetized with 1.5% isoflurane and imaged in a microPET for 60 min. The rats that were injected consciously (Groups 2 and 3) were placed in a rat restrainer during [(18) F]fallypride injection. They were habituated in that restrainer for 3 days prior to the experiment day to minimize restraint-related stress. For comparison, a control group of rats was imaged for 120 min simultaneously with the administration of [(18) F]fallypride i.v. while under 1.5% isoflurane. The DVR' estimates from the 60 min acquisitions were compared with the DVR' from the last 60 min of the 120 min acquisitions (after neglecting the first 60 min). In addition, the striatal time-activity curves were fit with a 2-tissue + plasma compartment model using an arbitrary simulated plasma input function to obtain k(3) /k(4) (≈ BP(ND) ) for the 60 and 120 min acquisitions. RESULTS: Isoflurane anesthesia caused a significant reduction, up to 22%, in the DVR' estimates, which were 15.7 ± 0.3 (mean ± SE) for the controls, 17.7 ± 0.3 for Group 1, 19.2 ± 0.4 for Group 2, and 18.8 ± 0.7 for Group 3. The compartmental model fit produced similar results, ∼30% reduction in k(3) /k(4) for the 120-min acquisitions compared with the 60-min acquisitions (initial conscious uptake of the radiotracer). CONCLUSION: The results of this study demonstrate that isoflurane anesthesia significantly decreases striatal [(18) F]fallypride BP(ND) in rats. Of similar importance, this work demonstrates the effectiveness of delayed scans following radiotracer injection and the implication that different types of studies can be conducted simultaneously with this method, including studies of behavioral and environmental impact on brain receptors.


Assuntos
Anestesia por Inalação , Benzamidas , Radioisótopos de Flúor , Isoflurano/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Pirrolidinas , Receptores de Dopamina D2/metabolismo , Anestesia por Inalação/métodos , Animais , Masculino , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/agonistas
15.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33476302

RESUMO

The metabotropic glutamate receptor 7 (mGlu7) is a G protein-coupled receptor that has been recently linked to neurodevelopmental disorders. This association is supported by the identification of GRM7 variants in patients with autism spectrum disorder, attention deficit hyperactivity disorder, and severe developmental delay. One GRM7 mutation previously reported in 2 patients results in a single amino acid change, I154T, within the mGlu7 ligand-binding domain. Here, we report 2 new patients with this mutation who present with severe developmental delay and epilepsy. Functional studies of the mGlu7-I154T mutant reveal that this substitution resulted in significant loss of mGlu7 protein expression in HEK293A cells and in mice. We show that this occurred posttranscriptionally at the level of protein expression and trafficking. Similar to mGlu7-global KO mice, mGlu7-I154T animals exhibited reduced motor coordination, deficits in contextual fear learning, and seizures. This provides functional evidence that a disease-associated mutation affecting the mGlu7 receptor was sufficient to cause neurological dysfunction in mice and further validates GRM7 as a disease-causing gene in the human population.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Fenótipo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Criança , Pré-Escolar , Epilepsia , Medo , Feminino , Proteínas de Ligação ao GTP , Humanos , Lactente , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Transtornos do Neurodesenvolvimento/genética , Linhagem , Convulsões
16.
ACS Med Chem Lett ; 12(8): 1342-1349, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413964

RESUMO

Herein, we report the SAR leading to the discovery of VU6028418, a potent M4 mAChR antagonist with high subtype-selectivity and attractive DMPK properties in vitro and in vivo across multiple species. VU6028418 was subsequently evaluated as a preclinical candidate for the treatment of dystonia and other movement disorders. During the characterization of VU6028418, a novel use of deuterium incorporation as a means to modulate CYP inhibition was also discovered.

17.
ACS Pharmacol Transl Sci ; 4(4): 1306-1321, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423268

RESUMO

Nonselective antagonists of muscarinic acetylcholine receptors (mAChRs) that broadly inhibit all five mAChR subtypes provide an efficacious treatment for some movement disorders, including Parkinson's disease and dystonia. Despite their efficacy in these and other central nervous system disorders, antimuscarinic therapy has limited utility due to severe adverse effects that often limit their tolerability by patients. Recent advances in understanding the roles that each mAChR subtype plays in disease pathology suggest that highly selective ligands for individual subtypes may underlie the antiparkinsonian and antidystonic efficacy observed with the use of nonselective antimuscarinic therapeutics. Our recent work has indicated that the M4 muscarinic acetylcholine receptor has several important roles in opposing aberrant neurotransmitter release, intracellular signaling pathways, and brain circuits associated with movement disorders. This raises the possibility that selective antagonists of M4 may recapitulate the efficacy of nonselective antimuscarinic therapeutics and may decrease or eliminate the adverse effects associated with these drugs. However, this has not been directly tested due to lack of selective antagonists of M4. Here, we utilize genetic mAChR knockout animals in combination with nonselective mAChR antagonists to confirm that the M4 receptor activation is required for the locomotor-stimulating and antiparkinsonian efficacy in rodent models. We also report the synthesis, discovery, and characterization of the first-in-class selective M4 antagonists VU6013720, VU6021302, and VU6021625 and confirm that these optimized compounds have antiparkinsonian and antidystonic efficacy in pharmacological and genetic models of movement disorders.

18.
Mol Pharmacol ; 78(6): 1105-23, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20923853

RESUMO

Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl)benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenylethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phencyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl)phenyl)methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.


Assuntos
Ansiolíticos/farmacologia , Antipsicóticos/farmacologia , Agitação Psicomotora/tratamento farmacológico , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Ansiolíticos/química , Ansiolíticos/uso terapêutico , Antipsicóticos/química , Antipsicóticos/uso terapêutico , Células Cultivadas , Cricetinae , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Agitação Psicomotora/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5
19.
Sci Signal ; 12(610)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796631

RESUMO

Highly selective, positive allosteric modulators (PAMs) of the M1 subtype of muscarinic acetylcholine receptor have emerged as an exciting new approach to potentially improve cognitive function in patients suffering from Alzheimer's disease and schizophrenia. Discovery programs have produced a structurally diverse range of M1 receptor PAMs with distinct pharmacological properties, including different extents of agonist activity and differences in signal bias. This includes biased M1 receptor PAMs that can potentiate coupling of the receptor to activation of phospholipase C (PLC) but not phospholipase D (PLD). However, little is known about the role of PLD in M1 receptor signaling in native systems, and it is not clear whether biased M1 PAMs display differences in modulating M1-mediated responses in native tissue. Using PLD inhibitors and PLD knockout mice, we showed that PLD was necessary for the induction of M1-dependent long-term depression (LTD) in the prefrontal cortex (PFC). Furthermore, biased M1 PAMs that did not couple to PLD not only failed to potentiate orthosteric agonist-induced LTD but also blocked M1-dependent LTD in the PFC. In contrast, biased and nonbiased M1 PAMs acted similarly in potentiating M1-dependent electrophysiological responses that were PLD independent. These findings demonstrate that PLD plays a critical role in the ability of M1 PAMs to modulate certain central nervous system (CNS) functions and that biased M1 PAMs function differently in brain regions implicated in cognition.


Assuntos
Córtex Cerebral/enzimologia , Plasticidade Neuronal , Fosfolipase D/genética , Fosfolipase D/metabolismo , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Sítio Alostérico , Animais , Células CHO , Cálcio/química , Cognição , Cricetinae , Cricetulus , Eletrofisiologia , Feminino , Humanos , Depressão Sináptica de Longo Prazo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Pré-Frontal/enzimologia , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
20.
ACS Chem Neurosci ; 10(3): 1035-1042, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30086237

RESUMO

This Letter describes the chemical optimization of a new series of muscarinic acetylcholine receptor subtype 1 (M1) positive allosteric modulators (PAMs) based on novel tricyclic triazolo- and imidazopyridine lactam cores, devoid of M1 agonism, e.g., no M1 ago-PAM activity, in high expressing recombinant cell lines. While all the new tricyclic congeners afforded excellent rat pharmacokinetic (PK) properties (CLp < 8 mL/min/kg and t1/2 > 5 h), regioisomeric triazolopyridine analogues were uniformly not CNS penetrant ( Kp < 0.05), despite a lack of hydrogen bond donors. However, removal of a single nitrogen atom to afford imidazopyridine derivatives proved to retain the excellent rat PK and provide high CNS penetration ( Kp > 2), despite inclusion of a basic nitrogen. Moreover, 24c was devoid of M1 agonism in high expressing recombinant cell lines and did not induce cholinergic seizures in vivo in mice. Interestingly, all of the new M1 PAMs across the diverse tricyclic heterocyclic cores possessed equivalent CNS MPO scores (>4.5), highlighting the value of both "medicinal chemist's eye" and experimental data, e.g., not sole reliance (or decision bias) on in silico calculated properties, for parameters as complex as CNS penetration.


Assuntos
Descoberta de Drogas/métodos , Imidazóis/farmacologia , Lactamas/farmacologia , Agonistas Muscarínicos/farmacologia , Piridinas/farmacologia , Receptor Muscarínico M1/agonistas , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Descoberta de Drogas/tendências , Humanos , Imidazóis/química , Lactamas/química , Camundongos , Agonistas Muscarínicos/química , Piridinas/química , Ratos , Receptor Muscarínico M1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA