Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7971): 724-732, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438522

RESUMO

The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.

2.
Science ; 378(6624): 1105-1110, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36417498

RESUMO

The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.

3.
Appl Spectrosc ; 75(7): 763-773, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33876994

RESUMO

We describe the wavelength calibration of the spectrometer for the scanning of habitable environments with Raman and luminescence for organics and chemicals (SHERLOC) instrument onboard NASA's Perseverance Rover. SHERLOC utilizes deep ultraviolet Raman and fluorescence (DUV R/F) spectroscopy to enable analysis of samples from the Martian surface. SHERLOC employs a 248.6 nm deep ultraviolet laser to generate Raman-scattered photons and native fluorescence emission photons from near-surface material to detect and classify chemical and mineralogical compositions. The collected photons are focused on a charge-coupled device and the data are returned to Earth for analysis. The compact DUV R/F spectrometer has a spectral range from 249.9 nm to 353.6 nm (∼200 cm-1 to 12 000 cm-1) (with a spectral resolution of 0.296 nm (∼40 cm-1)). The compact spectrometer uses a custom design to project a high-resolution Raman spectrum and a low-resolution fluorescence spectrum on a single charge-coupled device. The natural spectral separation enabled by deep ultraviolet excitation enables wavelength separation of the Raman/fluorescence spectra. The SHERLOC spectrometer was designed to optimize the resolution of the Raman spectral region and the wavelength range of the fluorescence region. The resulting illumination on the charge-coupled device is curved, requiring a segmented, nonlinear wavelength calibration in order to understand the mineralogy and chemistry of Martian materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA