Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
PLoS Pathog ; 19(5): e1011421, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37256908

RESUMO

Streptococcus pneumoniae is an opportunistic pathogen that colonizes the upper respiratory tract asymptomatically and, upon invasion, can lead to severe diseases including otitis media, sinusitis, meningitis, bacteremia, and pneumonia. One of the first lines of defense against pneumococcal invasive disease is inflammation, including the recruitment of neutrophils to the site of infection. The invasive pneumococcus can be cleared through the action of serine proteases generated by neutrophils. It is less clear how serine proteases impact non-invasive pneumococcal colonization, which is the key first step to invasion and transmission. One significant aspect of pneumococcal biology and adaptation in the respiratory tract is its natural competence, which is triggered by a small peptide CSP. In this study, we investigate if serine proteases are capable of degrading CSP and the impact this has on pneumococcal competence. We found that CSP has several potential sites for trypsin-like serine protease degradation and that there were preferential cleavage sites recognized by the proteases. Digestion of CSP with two different trypsin-like serine proteases dramatically reduced competence in a dose-dependent manner. Incubation of CSP with mouse lung homogenate also reduced recombination frequency of the pneumococcus. These ex vivo experiments suggested that serine proteases in the lower respiratory tract reduce pneumococcal competence. This was subsequently confirmed measuring in vivo recombination frequencies after induction of protease production via poly (I:C) stimulation and via co-infection with influenza A virus, which dramatically lowered recombination events. These data shed light on a new mechanism by which the host can modulate pneumococcal behavior and genetic exchange via direct degradation of the competence signaling peptide.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Camundongos , Streptococcus pneumoniae/genética , Inflamação , Serina Proteases , Peptídeos
2.
PLoS Pathog ; 18(12): e1011020, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542660

RESUMO

BACKGROUND: For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS: Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS: Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Streptococcus pneumoniae/metabolismo , Vírus da Influenza A/genética , Virulência , Galactose/metabolismo , Multiômica , Proteômica , Influenza Humana/genética , Influenza Humana/complicações
3.
Proc Natl Acad Sci U S A ; 117(21): 11703-11714, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393645

RESUMO

Patients with hematological malignancies or undergoing hematopoietic stem cell transplantation are vulnerable to colonization and infection with multidrug-resistant organisms, including vancomycin-resistant Enterococcus faecium (VREfm). Over a 10-y period, we collected and sequenced the genomes of 110 VREfm isolates from gastrointestinal and blood cultures of 24 pediatric patients undergoing chemotherapy or hematopoietic stem cell transplantation for hematological malignancy at St. Jude Children's Research Hospital. We used patient-specific reference genomes to identify variants that arose over time in subsequent gastrointestinal and blood isolates from each patient and analyzed these variants for insight into how VREfm adapted during colonization and bloodstream infection within each patient. Variants were enriched in genes involved in carbohydrate metabolism, and phenotypic analysis identified associated differences in carbohydrate utilization among isolates. In particular, a Y585C mutation in the sorbitol operon transcriptional regulator gutR was associated with increased bacterial growth in the presence of sorbitol. We also found differences in biofilm-formation capability between isolates and observed that increased biofilm formation correlated with mutations in the putative E. faecium capsular polysaccharide (cps) biosynthetic locus, with different mutations arising independently in distinct genetic backgrounds. Isolates with cps mutations showed improved survival following exposure to lysozyme, suggesting a possible reason for the selection of capsule-lacking bacteria. Finally, we observed mutations conferring increased tolerance of linezolid and daptomycin in patients who were treated with these antibiotics. Overall, this study documents known and previously undescribed ways that VREfm evolve during intestinal colonization and subsequent bloodstream infection in immunocompromised pediatric patients.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococos Resistentes à Vancomicina , Antibacterianos/farmacologia , Bacteriemia/microbiologia , Biofilmes , Criança , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/patogenicidade , Evolução Molecular , Feminino , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Humanos , Hospedeiro Imunocomprometido , Masculino , Mutação/genética , Sorbitol/metabolismo , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/patogenicidade
4.
Clin Infect Dis ; 75(4): 647-656, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34891152

RESUMO

BACKGROUND: Carriage studies are fundamental to assessing the effects of pneumococcal vaccines. Because a large proportion of oral streptococci carry homologues of pneumococcal genes, non-culture-based detection and serotyping of upper respiratory tract (URT) samples can be problematic. In the current study, we investigated whether culture-free molecular methods could differentiate pneumococci from oral streptococci carried by adults in the URT. METHODS: Paired nasopharyngeal (NP) and oropharyngeal (OP) samples were collected from 100 older adults twice a month for 1 year. Extracts from the combined NP + OP samples (n = 2400) were subjected to lytA real-time polymerase chain reaction (PCR). Positive samples were subjected to pure culture isolation, followed by species confirmation using multiple approaches. Multibead assays and whole-genome sequencing were used for serotyping. RESULTS: In 20 of 301 combined NP + OP extracts with positive lytA PCR results, probable pneumococcus-like colonies grew, based on colony morphology and biochemical tests. Multiple approaches confirmed that 4 isolates were Streptococcus pneumoniae, 3 were Streptococcus pseudopneumoniae, 12 were Streptococcus mitis, and 1 were Streptococcus oralis. Eight nonpneumococcal strains carried pneumococcus-like cps loci (approximate size, 18-25 kb) that showed >70% nucleotide identity with their pneumococcal counterparts. While investigating the antigenic profile, we found that some S. mitis strains (P066 and P107) reacted with both serotype-specific polyclonal (type 39 and FS17b) and monoclonal (Hyp10AG1 and Hyp17FM1) antisera, whereas some strains (P063 and P074) reacted only with polyclonal antisera (type 5 and FS35a). CONCLUSION: The extensive capsular overlap suggests that pneumococcal vaccines could reduce carriage of oral streptococci expressing cross-reactive capsules. Furthermore, direct use of culture-free PCR-based methods in URT samples has limited usefulness for carriage studies.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Idoso , Portador Sadio/diagnóstico , Humanos , Soros Imunes , Nasofaringe , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Reação em Cadeia da Polimerase em Tempo Real , Sorotipagem , Organização Mundial da Saúde
5.
Mol Biol Evol ; 38(6): 2209-2226, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33502519

RESUMO

Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/patogenicidade , Animais , Feminino , Genoma Bacteriano , Humanos , Pulmão/microbiologia , Camundongos , Nasofaringe/microbiologia , Distribuição Aleatória , Streptococcus pneumoniae/genética , Fatores de Virulência
6.
J Infect Dis ; 223(12 Suppl 2): S201-S208, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33330907

RESUMO

The bacterial, fungal, and helminthic species that comprise the microbiome of the mammalian host have profound effects on health and disease. Pathogenic viruses must contend with the microbiome during infection and likely have evolved to exploit or evade the microbiome. Both direct interactions between the virions and the microbiota and immunomodulation and tissue remodeling caused by the microbiome alter viral pathogenesis in either host- or virus-beneficial ways. Recent insights from in vitro and murine models of viral pathogenesis have highlighted synergistic and antagonistic, direct and indirect interactions between the microbiome and pathogenic viruses. This review will focus on the transkingdom interactions between human gastrointestinal and respiratory viruses and the constituent microbiome of those tissues.


Assuntos
Microbiota/fisiologia , Vírus/patogenicidade , Animais , Fenômenos Fisiológicos Bacterianos , Bacteriófagos/fisiologia , Fungos/fisiologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/parasitologia , Trato Gastrointestinal/virologia , Helmintos/fisiologia , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/parasitologia , Pulmão/virologia , Vírus/classificação
7.
Infect Immun ; 89(8): e0071320, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031124

RESUMO

Streptococcus pneumoniae is an opportunistic pathogen that is a common cause of serious invasive diseases such as pneumonia, bacteremia, meningitis, and otitis media. Transmission of this bacterium has classically been thought to occur through inhalation of respiratory droplets and direct contact with nasal secretions. However, the demonstration that S. pneumoniae is desiccation tolerant and, therefore, environmentally stable for extended periods of time opens up the possibility that this pathogen is also transmitted via contaminated surfaces (fomites). To better understand the molecular mechanisms that enable S. pneumoniae to survive periods of desiccation, we performed a high-throughput transposon sequencing (Tn-seq) screen in search of genetic determinants of desiccation tolerance. We identified 42 genes whose disruption reduced desiccation tolerance and 45 genes that enhanced desiccation tolerance. The nucleotide excision repair pathway was the most enriched category in our Tn-seq results, and we found that additional DNA repair pathways are required for desiccation tolerance, demonstrating the importance of maintaining genome integrity after desiccation. Deletion of the nucleotide excision repair gene uvrA resulted in a delay in transmission between infant mice, indicating a correlation between desiccation tolerance and pneumococcal transmssion. Understanding the molecular mechanisms that enable pneumococcal persistence in the environment may enable targeting of these pathways to prevent fomite transmission, thereby preventing the establishment of new colonization and any resulting invasive disease.


Assuntos
Reparo do DNA , Elementos de DNA Transponíveis , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , Adaptação Biológica , Animais , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Camundongos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/transmissão , Transdução de Sinais , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/patogenicidade
8.
Infect Immun ; 89(7): e0002321, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33875471

RESUMO

Streptococcus pneumoniae (pneumococcus) is one of the primary bacterial pathogens that complicates influenza virus infections. These bacterial coinfections increase influenza-associated morbidity and mortality through a number of immunological and viral-mediated mechanisms, but the specific bacterial genes that contribute to postinfluenza pathogenicity are not known. Here, we used genome-wide transposon mutagenesis (Tn-Seq) to reveal bacterial genes that confer improved fitness in influenza virus-infected hosts. The majority of the 32 genes identified are involved in bacterial metabolism, including nucleotide biosynthesis, amino acid biosynthesis, protein translation, and membrane transport. We generated mutants with single-gene deletions (SGD) of five of the genes identified, SPD1414, SPD2047 (cbiO1), SPD0058 (purD), SPD1098, and SPD0822 (proB), to investigate their effects on in vivo fitness, disease severity, and host immune responses. The growth of the SGD mutants was slightly attenuated in vitro and in vivo, but each still grew to high titers in the lungs of mock- and influenza virus-infected hosts. Despite high bacterial loads, mortality was significantly reduced or delayed with all SGD mutants. Time-dependent reductions in pulmonary neutrophils, inflammatory macrophages, and select proinflammatory cytokines and chemokines were also observed. Immunohistochemical staining further revealed altered neutrophil distribution with reduced degeneration in the lungs of influenza virus-SGD mutant-coinfected animals. These studies demonstrate a critical role for specific bacterial genes and for bacterial metabolism in driving virulence and modulating immune function during influenza-associated bacterial pneumonia.


Assuntos
Coinfecção , Aptidão Genética , Interações Hospedeiro-Patógeno , Vírus da Influenza A , Influenza Humana/virologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Proteínas de Bactérias/genética , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação , Vírus da Influenza A/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Mutação , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia
9.
Mol Microbiol ; 114(4): 536-552, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32495474

RESUMO

Streptococcus pneumoniae is a major human pathogen that must adapt to unique nutritional environments in several host niches. The pneumococcus can metabolize a range of carbohydrates that feed into glycolysis ending in pyruvate, which is catabolized by several enzymes. We investigated how the pneumococcus utilizes these enzymes to metabolize different carbohydrates and how this impacts survival in the host. Loss of ldh decreased bacterial burden in the nasopharynx and enhanced bacteremia in mice. Loss of spxB, pdhC or pfl2 decreased bacteremia and increased host survival. In glucose or galactose, loss of ldh increased capsule production, whereas loss of spxB and pdhC reduced capsule production. The pfl2 mutant exhibited reduced capsule production only in galactose. In glucose, pyruvate was metabolized primarily by LDH to generate lactate and NAD+ and by SpxB and PDHc to generate acetyl-CoA. In galactose, pyruvate metabolism was shunted toward acetyl-CoA production. The majority of acetyl-CoA generated by PFL was used to regenerate NAD+ with a subset used in capsule production, while the acetyl-CoA generated by SpxB and PDHc was utilized primarily for capsule biosynthesis. These data suggest that the pneumococcus can alter flux of pyruvate metabolism dependent on the carbohydrate present to succeed in distinct host niches.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Ácido Pirúvico/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Carboidratos/fisiologia , Feminino , Galactose/metabolismo , Glicólise , Peróxido de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Streptococcus pneumoniae/enzimologia , Virulência/fisiologia
10.
Bioessays ; 41(12): e1900128, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31693223

RESUMO

The synergies between viral and bacterial infections are well established. Most studies have been focused on the indirect mechanisms underlying this phenomenon, including immune modulation and alterations to the mucosal structures that promote pathogen outgrowth. A growing body of evidence implicates direct binding of virus to bacterial surfaces being an additional mechanism of synergy at the host-pathogen interface. These cross-kingdom interactions enhance bacterial and viral adhesion and can alter tissue tropism. These bacterial-viral complexes play unique roles in pathogenesis and can alter virulence potential. The bacterial-viral complexes may also play important roles in pathogen transmission. Additionally, the complexes are recognized by the host immune system in a distinct manner, thus presenting novel routes for vaccine development. These synergies are active for multiple species in both the respiratory and gastrointestinal tract, indicating that direct interactions between bacteria and virus to modulate host interactions are used by a diverse array of species.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Coinfecção/genética , Coinfecção/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Streptococcus/patogenicidade , Virulência , Vírus/patogenicidade
11.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816729

RESUMO

Coagulase-negative staphylococci (CoNS) are a common etiology of serious and recurrent infections in immunocompromised patients. Although most isolates appear susceptible to vancomycin, a single strain might have a subpopulation of resistant bacteria. This phenomenon is termed heteroresistance and may adversely affect the response to treatment. A retrospective cohort study was performed of pediatric patients with leukemia treated at St. Jude Children's Research Hospital who developed CoNS central line-associated bloodstream infection (CLABSI). Available isolates were sequenced and tested for vancomycin heteroresistance by population analysis profiling. Risk factors for heteroresistance and the association of heteroresistance with treatment failure (death or relapse of infection) or poor clinical response to vancomycin therapy (treatment failure or persistent bacteremia after vancomycin initiation) were evaluated. For 65 participants with CoNS CLABSI, 62 initial isolates were evaluable, of which 24 (39%) were vancomycin heteroresistant. All heteroresistant isolates were of Staphylococcus epidermidis and comprised multiple sequence types. Participants with heteroresistant bacteria had more exposure to vancomycin prophylaxis (P = 0.026) during the 60 days prior to infection. Of the 40 participants evaluable for clinical outcomes, heteroresistance increased the risk of treatment failure (P = 0.012) and poor clinical response (P = 0.001). This effect persisted after controlling for identified confounders. These data indicate that vancomycin heteroresistance is common in CoNS isolates from CLABSIs in pediatric patients with leukemia and is associated with poor clinical outcomes. Validation of these findings in an independent cohort and evaluation of alternative antibiotic therapy in patients with heteroresistant infections have the potential to improve care for serious CoNS infections.


Assuntos
Bacteriemia , Sepse , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Criança , Coagulase , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Sepse/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/uso terapêutico
12.
PLoS Pathog ; 14(12): e1007461, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30517198

RESUMO

Efficient and highly organized regulation of transcription is fundamental to an organism's ability to survive, proliferate, and quickly respond to its environment. Therefore, precise mapping of transcriptional units and understanding their regulation is crucial to determining how pathogenic bacteria cause disease and how they may be inhibited. In this study, we map the transcriptional landscape of the bacterial pathogen Streptococcus pneumoniae TIGR4 by applying a combination of high-throughput RNA-sequencing techniques. We successfully map 1864 high confidence transcription termination sites (TTSs), 790 high confidence transcription start sites (TSSs) (742 primary, and 48 secondary), and 1360 low confidence TSSs (74 secondary and 1286 primary) to yield a total of 2150 TSSs. Furthermore, our study reveals a complex transcriptome wherein environment-respondent alternate transcriptional units are observed within operons stemming from internal TSSs and TTSs. Additionally, we identify many putative cis-regulatory RNA elements and riboswitches within 5'-untranslated regions (5'-UTR). By integrating TSSs and TTSs with independently collected RNA-Seq datasets from a variety of conditions, we establish the response of these regulators to changes in growth conditions and validate several of them. Furthermore, to demonstrate the importance of ribo-regulation by 5'-UTR elements for in vivo virulence, we show that the pyrR regulatory element is essential for survival, successful colonization and infection in mice suggesting that such RNA elements are potential drug targets. Importantly, we show that our approach of combining high-throughput sequencing with in vivo experiments can reconstruct a global understanding of regulation, but also pave the way for discovery of compounds that target (ribo-)regulators to mitigate virulence and antibiotic resistance.


Assuntos
Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Virulência/genética , Animais , Genes Bacterianos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Óperon/genética , Transcrição Gênica
13.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308088

RESUMO

Acute otitis media is one of the most common childhood infections worldwide. Currently licensed vaccines against the common otopathogen Streptococcus pneumoniae target the bacterial capsular polysaccharide and confer no protection against nonencapsulated strains or capsular types outside vaccine coverage. Mucosal infections such as acute otitis media remain prevalent, even those caused by vaccine-covered serotypes. Here, we report that a protein-based vaccine, a fusion construct of epitopes of CbpA to pneumolysin toxoid, confers effective protection against pneumococcal acute otitis media for non-PCV-13 serotypes and enhances protection for PCV-13 serotypes when coadministered with PCV-13. Having cross-reactive epitopes, the fusion protein also induces potent antibody responses against nontypeable Haemophilus influenzae and S. pneumoniae, engendering protection against acute otitis media caused by emerging unencapsulated otopathogens. These data suggest that augmenting capsule-based vaccination with conserved, cross-reactive protein-based vaccines broadens and enhances protection against acute otitis media.


Assuntos
Anticorpos Antibacterianos/biossíntese , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae/imunologia , Otite Média/prevenção & controle , Vacinas Pneumocócicas/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Streptococcus pneumoniae/imunologia , Doença Aguda , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteção Cruzada , Reações Cruzadas , Feminino , Expressão Gênica , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/patogenicidade , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Otite Média/imunologia , Otite Média/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/biossíntese , Estreptolisinas/genética , Toxoides/biossíntese , Toxoides/genética , Vacinação , Vacinas Sintéticas
14.
Artigo em Inglês | MEDLINE | ID: mdl-30858215

RESUMO

The most frequent ailment for which antibiotics are prescribed is otitis media (ear infections), which is most commonly caused by Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae Treatment of otitis media is complicated by the fact that the bacteria in the middle ear typically form biofilms, which can be recalcitrant to antibiotic treatment. Furthermore, bacterial respiratory infections can be greatly exacerbated by viral coinfection, which is particularly evidenced by the synergy between influenza and S. pneumoniae In this study, we sought to ascertain the in vivo efficacy of aminomethyl spectinomycin lead 1950, an effective antibacterial agent both in vitro and in vivo against Streptococcus pneumoniae in the context of complex respiratory infections and acute otitis media. A single dose of 1950 significantly reduced bacterial burden in the respiratory tract for all three pathogens, even when species were present in a coinfection model. Additionally, a single dose of 1950 effectively reduced pneumococcal acute otitis media from the middle ear. The agent 1950 also proved efficacious in the context of influenza-pneumococcal super infection. These data further support the development of this family of compounds as potential therapeutic agents against the common causes of complex upper respiratory tract infections and acute otitis media.


Assuntos
Infecções Respiratórias/tratamento farmacológico , Espectinomicina/uso terapêutico , Animais , Feminino , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Moraxella catarrhalis/efeitos dos fármacos , Moraxella catarrhalis/patogenicidade , Otite Média/tratamento farmacológico , Otite Média/microbiologia , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Espectinomicina/administração & dosagem , Espectinomicina/química , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/patogenicidade
15.
PLoS Pathog ; 13(5): e1006339, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542565

RESUMO

Streptococcus pneumoniae (pneumococcus) is a leading cause of death and disease in children and elderly. Genetic variability among isolates from this species is high. These differences, often the product of gene loss or gene acquisition via horizontal gene transfer, can endow strains with new molecular pathways, diverse phenotypes, and ecological advantages. PMEN1 is a widespread and multidrug-resistant pneumococcal lineage. Using comparative genomics we have determined that a regulator-peptide signal transduction system, TprA2/PhrA2, was acquired by a PMEN1 ancestor and is encoded by the vast majority of strains in this lineage. We show that TprA2 is a negative regulator of a PMEN1-specific gene encoding a lanthionine-containing peptide (lcpA). The activity of TprA2 is modulated by its cognate peptide, PhrA2. Expression of phrA2 is density-dependent and its C-terminus relieves TprA2-mediated inhibition leading to expression of lcpA. In the pneumococcal mouse model with intranasal inoculation, TprA2 had no effect on nasopharyngeal colonization but was associated with decreased lung disease via its control of lcpA levels. Furthermore, the TprA2/PhrA2 system has integrated into the pneumococcal regulatory circuitry, as PhrA2 activates TprA/PhrA, a second regulator-peptide signal transduction system widespread among pneumococci. Extracellular PhrA2 can release TprA-mediated inhibition, activating expression of TprA-repressed genes in both PMEN1 cells as well as another pneumococcal lineage. Acquisition of TprA2/PhrA2 has provided PMEN1 isolates with a mechanism to promote commensalism over dissemination and control inter-strain gene regulation.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Pandemias , Infecções Pneumocócicas/microbiologia , Transdução de Sinais , Streptococcus pneumoniae/genética , Idoso , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Genômica , Humanos , Camundongos , Modelos Biológicos , Mutação , Nasofaringe/microbiologia , Filogenia , Infecções Pneumocócicas/epidemiologia , Regulon/genética , Alinhamento de Sequência , Streptococcus pneumoniae/fisiologia
16.
Clin Infect Dis ; 67(4): 541-548, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29518185

RESUMO

Background: Myelosuppression-related infections remain important causes of morbidity and mortality in children with acute lymphoblastic leukemia (ALL). Methods: By analyzing fecal samples collected at diagnosis and after each of the initial 3 phases of chemotherapy, we evaluated the role of gut microbiota in predicting infections in 199 children with newly diagnosed ALL. The bacterial 16S rRNA gene was analyzed by high-depth sequencing to determine the diversity and composition of the microbiome. Results: After the induction and reinduction I phases of chemotherapy, microbial diversity decreased significantly relative to the prechemotherapy value. After chemotherapy, the relative abundance of certain bacterial taxa (eg, Bacteroidetes) decreased significantly, whereas that of other taxa (eg, Clostridiaceae and Streptococcaceae) increased. A baseline gut microbiome characterized by Proteobacteria predicted febrile neutropenia. Adjusting for the chemotherapy phase and ALL risk level, Enterococcaceae dominance (relative abundance ≥30%) predicted significantly greater risk of subsequent febrile neutropenia and diarrheal illness, whereas Streptococcaceae dominance predicted significantly greater risk of subsequent diarrheal illness. Conclusions: In children undergoing therapy for newly diagnosed ALL, the relative abundance of Proteobacteria before chemotherapy initiation predicts development of febrile neutropenia, and domination of the gut microbiota by Enterococcaceae or Streptococcaceae at any time during chemotherapy predicts infection in subsequent phases of chemotherapy. Clinical Trial Registration: NCT00549848.


Assuntos
Antineoplásicos/efeitos adversos , Bactérias/efeitos dos fármacos , Infecções Bacterianas/complicações , Microbioma Gastrointestinal/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Antineoplásicos/uso terapêutico , Bactérias/classificação , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Valor Preditivo dos Testes , RNA Ribossômico 16S/genética , Fatores de Risco , Análise de Sequência de DNA
17.
PLoS Pathog ; 12(10): e1005951, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27760231

RESUMO

The pneumococcus is one of the most prodigious producers of hydrogen peroxide amongst bacterial pathogens. Hydrogen peroxide production by the pneumococcus has been implicated in antibiotic synergism, competition between other bacterial colonizers of the nasopharynx, and damage to epithelial cells. However, the role during invasive disease has been less clear with mutants defective in hydrogen peroxide production demonstrating both attenuation and heightened invasive disease capacity depending upon strain and serotype background. This work resolves these conflicting observations by demonstrating that the main hydrogen peroxide producing enzyme of the pneumococcus, SpxB, is required for capsule formation in a strain dependent manner. Capsule production by strains harboring capsules with acetylated sugars was dependent upon the presence of spxB while capsule production in serotypes lacking such linkages were not. The spxB mutant had significantly lower steady-state cellular levels of acetyl-CoA, suggesting that loss of capsule arises from dysregulation of this intermediary metabolite. This conclusion is corroborated by deletion of pdhC, which also resulted in lower steady-state acetyl-CoA levels and phenocopied the capsule expression profile of the spxB mutant. Capsule and acetyl-CoA levels were restored in the spxB and lctO (lactate oxidase) double mutant, supporting the connection between central metabolism and capsule formation. Taken together, these data show that the defect in pathogenesis in the spxB mutant is due to a metabolic imbalance that attenuates capsule formation and not to reduced hydrogen peroxide formation.


Assuntos
Cápsulas Bacterianas/metabolismo , Piruvato Oxidase/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Técnicas de Inativação de Genes , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/metabolismo , Reação em Cadeia da Polimerase , Streptococcus pneumoniae/metabolismo , Virulência
18.
PLoS Pathog ; 12(8): e1005804, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505057

RESUMO

The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVß6 integrin, which is upregulated during injury. Once expressed, αVß6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of ß6 during influenza infection is involved in disease pathogenesis. ß6-deficient mice (ß6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the ß6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of ß6-activated transforming growth factor-ß (TGF-ß). Administration of exogenous TGF-ß to ß6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVß6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.


Assuntos
Antígenos de Neoplasias/imunologia , Integrinas/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Pulmão/imunologia , Infecções Respiratórias/imunologia , Transferência Adotiva , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Immunoblotting , Pulmão/microbiologia , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
19.
Microbiology (Reading) ; 163(8): 1198-1207, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28749326

RESUMO

Neuraminidase A (NanA) is an important virulence factor that is anchored to the pneumococcal cell wall and cleaves sialic acid on host substrates. We noted that a secreted allele of NanA was over-represented in invasive pneumococcal isolates and promoted the development of meningitis when swapped into the genome of non-meningitis isolates replacing cell wall-anchored NanA. Both forms of recombinant NanA directly activated transforming growth factor (TGF)-ß, increased SMAD signalling and promoted loss of endothelial tight junction ZO-1. However, in assays using whole bacteria, only the cell-bound NanA decreased expression of ZO-1 and showed NanA dependence of bacterial invasion of endothelial cells. We conclude that NanA secretion versus retention on the cell surface does not influence neurotropism of clinical isolates. However, we describe a new NanA-TGF-ß signalling axis that leads to decreased blood-brain barrier integrity and enhances bacterial invasion.

20.
Proc Natl Acad Sci U S A ; 111(29): 10532-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002480

RESUMO

Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Interações Hospedeiro-Patógeno , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dados de Sequência Molecular , Fosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Staphylococcus aureus/patogenicidade , Especificidade por Substrato , Transcrição Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA