Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Small ; 20(42): e2401776, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031853

RESUMO

The presence of hierarchical suppressive pathways in the immune system combined with poor delivery efficiencies of adjuvants and antigens to antigen-presenting cells are major challenges in developing advanced vaccines. The present study reports a nanoadjuvant constructed using aluminosilicate nanoparticles (as particle templates), incorporating cytosine-phosphate-guanosine (CpG) oligonucleotides and small-interfering RNA (siRNA) to counteract immune suppression in antigen-presenting cells. Furthermore, the application of a metal-phenolic network (MPN) coating, which can endow the nanoparticles with protective and bioadhesive properties, is assessed with regard to the stability and immune function of the resulting nanoadjuvant in vitro and in vivo. Combining the adjuvanticity of aluminum and CpG with RNA interference and MPN coating results in a nanoadjuvant that exhibits greater accumulation in lymph nodes and elicits improved maturation of dendritic cells in comparison to a formulation without siRNA or MPN, and with no observable organ toxicity. The incorporation of a model antigen, ovalbumin, within the MPN coating demonstrates the capacity of MPNs to load functional biomolecules as well as the ability of the nanoadjuvant to trigger enhanced antigen-specific responses. The present template-assisted fabrication strategy for engineering nanoadjuvants holds promise in the design of delivery systems for disease prevention, as well as therapeutics.


Assuntos
Adjuvantes Imunológicos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Nanopartículas/química , Camundongos , Células Dendríticas/imunologia , Ovalbumina/imunologia , Ovalbumina/química , RNA Interferente Pequeno/administração & dosagem , Metais/química , Camundongos Endogâmicos C57BL , Imunidade
2.
Angew Chem Int Ed Engl ; 63(12): e202319583, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38282100

RESUMO

Small molecules, including therapeutic drugs and tracer molecules, play a vital role in biological processing, disease treatment and diagnosis, and have inspired various nanobiotechnology approaches to realize their biological function, particularly in drug delivery. Desirable features of a delivery system for functional small molecules (FSMs) include high biocompatibility, high loading capacity, and simple manufacturing processes, without the need for chemical modification of the FSM itself. Herein, we report a simple and versatile approach, based on metal-phenolic-mediated assembly, for assembling FSMs into nanoparticles (i.e., FSM-MPN NPs) under aqueous and ambient conditions. We demonstrate loading of anticancer drugs, latency reversal agents, and fluorophores at up to ~80 % that is mostly facilitated by π and hydrophobic interactions between the FSM and nanoparticle components. Secondary nanoparticle engineering involving coating with a polyphenol-antibody thin film or sequential co-loading of multiple FSMs enables cancer cell targeting and combination delivery, respectively. Incorporating fluorophores into FSM-MPN NPs enables the visualization of biodistribution at different time points, revealing that most of these NPs are retained in the kidney and heart 24 h post intravenous administration. This work provides a viable pathway for the rational design of small molecule nanoparticle delivery platforms for diverse biological applications.


Assuntos
Nanopartículas , Distribuição Tecidual , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Fenóis , Polifenóis , Metais
3.
Am J Physiol Heart Circ Physiol ; 325(2): H264-H277, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389950

RESUMO

Clinical studies suggest low testosterone levels are associated with cardiac arrhythmias, especially in later life. We investigated whether chronic exposure to low circulating testosterone promoted maladaptive electrical remodeling in ventricular myocytes from aging male mice and determined the role of late inward sodium current (INa,L) in this remodeling. C57BL/6 mice had a gonadectomy (GDX) or sham surgery (1 mo) and were aged to 22-28 mo. Ventricular myocytes were isolated; transmembrane voltage and currents were recorded (37°C). Action potential duration at 70 and 90% repolarization (APD70 and APD90) was prolonged in GDX compared with sham myocytes (APD90, 96.9 ± 3.2 vs. 55.4 ± 2.0 ms; P < 0.001). INa,L was also larger in GDX than sham (-2.4 ± 0.4 vs. -1.2 ± 0.2 pA/pF; P = 0.002). When cells were exposed to the INa,L antagonist ranolazine (10 µM), INa,L declined in GDX cells (-1.9 ± 0.5 vs. -0.4 ± 0.2 pA/pF; P < 0.001) and APD90 was reduced (96.3 ± 14.8 vs. 49.2 ± 9.4 ms; P = 0.001). GDX cells had more triggered activity (early/delayed afterdepolarizations, EADs/DADs) and spontaneous activity than sham. EADs were inhibited by ranolazine in GDX cells. The selective NaV1.8 blocker A-803467 (30 nM) also reduced INa,L, decreased APD and abolished triggered activity in GDX cells. Scn5a (NaV1.5) and Scn10a (NaV1.8) mRNA was increased in GDX ventricles, but only NaV1.8 protein abundance was increased in GDX compared with sham. In vivo studies showed QT prolongation and more arrhythmias in GDX mice. Thus, triggered activity in ventricular myocytes from aging male mice with long-term testosterone deficiency arises from APD prolongation mediated by larger NaV1.8- and NaV1.5-associated currents, which may explain the increase in arrhythmias.NEW & NOTEWORTHY Older men with low testosterone levels are at increased risk of developing cardiac arrhythmias. We found aged mice chronically exposed to low testosterone had more arrhythmias and ventricular myocytes had prolonged repolarization, abnormal electrical activity, larger late sodium currents, and increased expression of NaV1.8 sodium channels. Drugs that inhibit late sodium current or NaV1.8 channels abolished abnormal electrical activity and shortened repolarization. This suggests the late sodium current may be a novel target to treat arrhythmias in older testosterone-deficient men.


Assuntos
Sódio , Testosterona , Camundongos , Masculino , Animais , Ranolazina/farmacologia , Ranolazina/metabolismo , Testosterona/farmacologia , Testosterona/metabolismo , Sódio/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas , Canais de Sódio/metabolismo , Potenciais de Ação , Envelhecimento
4.
J Oncol Pharm Pract ; 29(7): 1555-1564, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36303425

RESUMO

BACKGROUND: The impact and downstream effects of the chemotherapy supply chain in Ethiopia are not well understood. The purpose of this study was to identify perceived gaps in supply chain and characterize their impact on patient care. METHODS: A concurrent mixed-method study was conducted at a large academic cancer center in Ethiopia. In-depth interviews (IDIs) and surveys were completed in collaboration with external stakeholders with knowledge about chemotherapy supply chain in Ethiopia. Thematic coding was used for qualitative analysis of IDI and descriptive statistics were used to summarize quantitative survey data. RESULTS: Six stakeholders participated in the IDIs and seven completed surveys. IDIs revealed that most chemotherapeutic agents are purchased by the Ethiopian Pharmaceutical Supply Agency (EPSA) and are distributed to cancer treatment centers. A free-market purchasing option also exists, but for chemotherapy obtained outside of government-subsidized channels, the potential for substandard or falsified chemotherapy was a concern. Participants expressed confidence that the correct treatment was administered to patients, but viewpoints on reliability and consistency of medication supply were variable. Quantitative data from the survey showed that participants were not confident that medications are prepared safely and correctly. Improper storage and manipulation of high-risk medications remain a significant risk to staff. CONCLUSIONS: This study provides insight from a healthcare staff perspective on how gaps in the chemotherapy supply chain process impact patient care in a low-income country. Inventory management, disruptions in supply chain, and product integrity were perceived as the largest gaps in the current chemotherapy supply chain structure.


Assuntos
Atenção à Saúde , Indústria Farmacêutica , Humanos , Etiópia , Reprodutibilidade dos Testes , Inquéritos e Questionários
5.
Proc Natl Acad Sci U S A ; 117(14): 7990-8000, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198206

RESUMO

Atrial fibrillation (AF) is prevalent in diabetes mellitus (DM); however, the basis for this is unknown. This study investigated AF susceptibility and atrial electrophysiology in type 1 diabetic Akita mice using in vivo intracardiac electrophysiology, high-resolution optical mapping in atrial preparations, and patch clamping in isolated atrial myocytes. qPCR and western blotting were used to assess ion channel expression. Akita mice were highly susceptible to AF in association with increased P-wave duration and slowed atrial conduction velocity. In a second model of type 1 DM, mice treated with streptozotocin (STZ) showed a similar increase in susceptibility to AF. Chronic insulin treatment reduced susceptibility and duration of AF and shortened P-wave duration in Akita mice. Atrial action potential (AP) morphology was altered in Akita mice due to a reduction in upstroke velocity and increases in AP duration. In Akita mice, atrial Na+ current (INa) and repolarizing K+ current (IK) carried by voltage gated K+ (Kv1.5) channels were reduced. The reduction in INa occurred in association with reduced expression of SCN5a and voltage gated Na+ (NaV1.5) channels as well as a shift in INa activation kinetics. Insulin potently and selectively increased INa in Akita mice without affecting IK Chronic insulin treatment increased INa in association with increased expression of NaV1.5. Acute insulin also increased INa, although to a smaller extent, due to enhanced insulin signaling via phosphatidylinositol 3,4,5-triphosphate (PIP3). Our study reveals a critical, selective role for insulin in regulating atrial INa, which impacts susceptibility to AF in type 1 DM.


Assuntos
Fibrilação Atrial/metabolismo , Remodelamento Atrial/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Insulina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial/imunologia , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Eletrocardiografia , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Insulina/administração & dosagem , Insulina/genética , Canal de Potássio Kv1.5/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Cultura Primária de Células , Sódio/metabolismo , Estreptozocina/toxicidade
6.
Angew Chem Int Ed Engl ; 62(12): e202214935, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36700351

RESUMO

DNA-based materials have attracted interest due to the tunable structure and encoded biological functionality of nucleic acids. A simple and general approach to synthesize DNA-based materials with fine control over morphology and bioactivity is important to expand their applications. Here, we report the synthesis of DNA-based particles via the supramolecular assembly of tannic acid (TA) and DNA. Uniform particles with different morphologies are obtained using a variety of DNA building blocks. The particles enable the co-delivery of cytosine-guanine adjuvant sequences and the antigen ovalbumin in model cells. Intramuscular injection of the particles in mice induces antigen-specific antibody production and T cell responses with no apparent toxicity. Protein expression in cells is shown using capsules assembled from TA and plasmid DNA. This work highlights the potential of TA as a universal material for directing the supramolecular assembly of DNA into gene and vaccine delivery platforms.


Assuntos
Adjuvantes Imunológicos , Polifenóis , Camundongos , Animais , Adjuvantes Imunológicos/química , Antígenos , Sistemas de Liberação de Medicamentos , DNA/química
7.
J Biol Chem ; 297(4): 101145, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473995

RESUMO

Bromodomains (BD) are conserved reader modules that bind acetylated lysine residues on histones. Although much has been learned regarding the in vitro properties of these domains, less is known about their function within chromatin complexes. SWI/SNF chromatin-remodeling complexes modulate transcription and contribute to DNA damage repair. Mutations in SWI/SNF subunits have been implicated in many cancers. Here we demonstrate that the BD of Caenorhabditis elegans SMARCA4/BRG1, a core SWI/SNF subunit, recognizes acetylated lysine 14 of histone H3 (H3K14ac), similar to its Homo sapiens ortholog. We identify the interactions of SMARCA4 with the acetylated histone peptide from a 1.29 Å-resolution crystal structure of the CeSMARCA4 BD-H3K14ac complex. Significantly, most of the SMARCA4 BD residues in contact with the histone peptide are conserved with other proteins containing family VIII bromodomains. Based on the premise that binding specificity is conserved among bromodomain orthologs, we propose that loop residues outside of the binding pocket position contact residues to recognize the H3K14ac sequence. CRISPR-Cas9-mediated mutations in the SMARCA4 BD that abolish H3K14ac binding in vitro had little or no effect on C. elegans viability or physiological function in vivo. However, combining SMARCA4 BD mutations with knockdown of the SWI/SNF accessory subunit PBRM-1 resulted in severe developmental defects in animals. In conclusion, we demonstrated an essential function for the SWI/SNF bromodomain in vivo and detected potential redundancy in epigenetic readers in regulating chromatin remodeling. These findings have implications for the development of small-molecule BD inhibitors to treat cancers and other diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Histonas/genética , Humanos , Ligação Proteica , Fatores de Transcrição/genética
8.
Am J Physiol Heart Circ Physiol ; 323(6): H1137-H1166, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269644

RESUMO

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Técnicas Eletrofisiológicas Cardíacas , Arritmias Cardíacas/etiologia , Miócitos Cardíacos
9.
Biochemistry ; 60(4): 324-345, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33464881

RESUMO

2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level of carbon fixation for biofuel production. Here we compare the biotin carboxylase (BC) domain of Hydrogenobacter thermophilus OGC with the well-studied mesophilic homologues to identify features that may contribute to thermal stability and activity. We report three OGC BC X-ray structures, each bound to bicarbonate, ADP, or ADP-Mg2+, and propose that substrate binding at high temperatures is facilitated by interactions that stabilize the flexible subdomain B in a partially closed conformation. Kinetic measurements with varying ATP and biotin concentrations distinguish two temperature-dependent steps, consistent with biotin's rate-limiting role in organizing the active site. Transition state thermodynamic values derived from the Eyring equation indicate a larger positive ΔH⧧ and a less negative ΔS⧧ compared to those of a previously reported mesophilic homologue. These thermodynamic values are explained by partially rate limiting product release. Phylogenetic analysis of BC domains suggests that OGC diverged prior to Aquificales evolution. The phylogenetic tree identifies mis-annotations of the Aquificales BC sequences, including the Aquifex aeolicus pyruvate carboxylase structure. Notably, our structural data reveal that the OGC BC dimer comprises a "wet" dimerization interface that is dominated by hydrophilic interactions and structural water molecules common to all BC domains and likely facilitates the conformational changes associated with the catalytic cycle. Mutations in the dimerization domain demonstrate that dimerization contributes to thermal stability.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Carbono-Nitrogênio Ligases/química , Cristalografia por Raios X , Estabilidade Enzimática , Temperatura Alta , Domínios Proteicos , Relação Estrutura-Atividade
10.
Am J Physiol Heart Circ Physiol ; 316(4): H768-H780, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657724

RESUMO

The impact of long-term gonadectomy (GDX) on cardiac contractile function was explored in the setting of aging. Male mice were subjected to bilateral GDX or sham operation (4 wk) and investigated at 16-18 mo of age. Ventricular myocytes were field stimulated (2 Hz, 37°C). Peak Ca2+ transients (fura 2) and contractions were similar in GDX and sham-operated mice, although Ca2+ transients (50% decay time: 45.2 ± 2.3 vs. 55.6 ± 3.1 ms, P < 0.05) and contractions (time constant of relaxation: 39.1 ± 3.2 vs. 69.5 ± 9.3 ms, P < 0.05) were prolonged in GDX mice. Action potential duration was increased in myocytes from GDX mice, but this did not account for prolonged responses, as Ca2+ transient decay was slow even when cells from GDX mice were voltage clamped with simulated "sham" action potentials. Western blots of proteins involved in Ca2+ sequestration and efflux showed that Na+/Ca2+ exchanger and sarco(endo)plasmic reticulum Ca2+-ATPase type 2 protein levels were unaffected, whereas phospholamban was dramatically higher in ventricles from aging GDX mice (0.24 ± 0.02 vs. 0.86 ± 0.13, P < 0.05). Myofilament Ca2+ sensitivity at physiological Ca2+ was similar, but phosphorylation of essential myosin light chain 1 was reduced by ≈50% in ventricles from aging GDX mice. M-mode echocardiography showed no change in systolic function (e.g., ejection fraction). Critically, pulse-wave Doppler echocardiography showed that GDX slowed isovolumic relaxation time (12.9 ± 0.9 vs. 16.9 ± 1.0 ms, P < 0.05), indicative of diastolic dysfunction. Thus, dysregulation of intracellular Ca2+ and myofilament dysfunction contribute to deficits in contraction in hearts from testosterone-deficient aging mice. This suggests that low testosterone helps promote diastolic dysfunction in the aging heart. NEW & NOTEWORTHY The influence of long-term gonadectomy on contractile function was examined in aging male hearts. Gonadectomy slowed the decay of Ca2+ transients and contractions in ventricular myocytes and slowed isovolumic relaxation time, demonstrating diastolic dysfunction. Underlying mechanisms included Ca2+ dysregulation, elevated phospholamban protein levels, and hypophosphorylation of a myofilament protein, essential myosin light chain. Testosterone deficiency led to intracellular Ca2+ dysregulation and myofilament dysfunction, which may facilitate diastolic dysfunction in the setting of aging.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Coração/fisiologia , Miofibrilas/metabolismo , Testosterona/deficiência , Potenciais de Ação/fisiologia , Envelhecimento/fisiologia , Animais , Sinalização do Cálcio/fisiologia , ATPases Transportadoras de Cálcio/metabolismo , Diástole/fisiologia , Ecocardiografia , Coração/diagnóstico por imagem , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Orquiectomia , Testosterona/sangue
11.
J Mol Cell Cardiol ; 124: 12-25, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30273558

RESUMO

Atrial fibrillation (AF) is prevalent in hypertension and elevated angiotensin II (Ang II); however, the mechanisms by which Ang II leads to AF are poorly understood. Here, we investigated the basis for this in mice treated with Ang II or saline for 3 weeks. Ang II treatment increased susceptibility to AF compared to saline controls in association with increases in P wave duration and atrial effective refractory period, as well as reductions in right and left atrial conduction velocity. Patch-clamp studies demonstrate that action potential (AP) duration was prolonged in right atrial myocytes from Ang II treated mice in association with a reduction in repolarizing K+ currents. In contrast, APs in left atrial myocytes from Ang II treated mice showed reductions in upstroke velocity and overshoot, as well as greater prolongations in AP duration. Ang II reduced Na+ current (INa) in the left, but not the right atrium. This reduction in INa was reversible following inhibition of protein kinase C (PKC) and PKCα expression was increased selectively in the left atrium in Ang II treated mice. The transient outward K+ current (Ito) showed larger reductions in the left atrium in association with a shift in the voltage dependence of activation. Finally, Ang II caused fibrosis throughout the atria in association with changes in collagen expression and regulators of the extracellular matrix. This study demonstrates that hypertension and elevated Ang II cause distinct patterns of electrical and structural remodeling in the right and left atria that collectively create a substrate for AF.


Assuntos
Potenciais de Ação , Angiotensina II/metabolismo , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/etiologia , Remodelamento Atrial , Angiotensina II/farmacologia , Animais , Biomarcadores , Pressão Sanguínea , Ecocardiografia , Eletrocardiografia , Imuno-Histoquímica , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
12.
Toxicol Pathol ; 46(7): 799-820, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30348063

RESUMO

Information on background changes in the ocular tissues of rabbits ( Oryctolagus cuniculus), a common species employed in ophthalmic toxicology studies, is sparse. This complicates interpretation of changes in light of small sample sizes on any single study. The purpose of this publication is to document the interstudy incidence of spontaneous or iatrogenic changes occurring in eyes of control rabbits. Photomicrographs of select lesions are provided. The data set was derived from a total of 54 studies conducted over an eleven-year period at Alcon Research Ltd., a Novartis Division, which featured topical ocular and contact lens routes of administration. It includes a total of 1,222 pigmented and albino New Zealand rabbits and a total of 2,084 eyes which were either untreated or treated with innocuous control articles. There were no noteworthy differences across routes of administration. Changes in anterior segment ocular and adnexal tissues were more common than in posterior segment ocular tissues. Overall, mononuclear cell infiltration was the most common finding. The retina was the posterior tissue most commonly observed with spontaneous changes, with folds and rosettes being the most common retinal finding. Retinal changes were more common in albino as compared to pigmented rabbits. Understanding the incidence and characteristics of spontaneous ocular lesions facilitates accurate and consistent diagnosis and data interpretation.


Assuntos
Grupos Controle , Olho/patologia , Lentes Intraoculares/efeitos adversos , Administração Oftálmica , Animais , Córnea/efeitos dos fármacos , Córnea/patologia , Avaliação Pré-Clínica de Medicamentos , Olho/efeitos dos fármacos , Pálpebras/efeitos dos fármacos , Pálpebras/patologia , Feminino , Masculino , Preparações Farmacêuticas/administração & dosagem , Coelhos , Retina/efeitos dos fármacos , Retina/patologia , Estudos Retrospectivos
13.
J Mol Cell Cardiol ; 111: 51-60, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28778766

RESUMO

Ovariectomy (OVX) promotes sarcoplasmic reticulum (SR) Ca2+ overload in ventricular myocytes. We hypothesized that the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway contributes to this Ca2+ dysregulation. Myocytes were isolated from adult female C57BL/6 mice following either OVX or sham surgery (surgery at ≈1mos). Contractions, Ca2+ concentrations (fura-2) and ionic currents were measured simultaneously (37°C, 2Hz) in voltage-clamped myocytes. Intracellular cAMP levels were determined with an enzyme immunoassay; phosphodiesterase (PDE) and adenylyl cyclase (AC) isoform expression was examined with qPCR. Ca2+ currents were similar in myocytes from sham and OVX mice but Ca2+ transients, excitation-contraction (EC)-coupling gain, SR content and contractions were larger in OVX than sham cells. To determine if the cAMP/PKA pathway mediated OVX-induced alterations in EC-coupling, cardiomyocytes were incubated with the PKA inhibitor H-89 (2µM), which abolished baseline differences. While basal intracellular cAMP did not differ, levels were higher in OVX than sham in the presence of a non-selective PDE inhibitor (300µM IBMX), or an AC activator (10µM forskolin). This suggests the production of cAMP by AC and its breakdown by PDE were enhanced by OVX. Consistent with this, mRNA levels for both AC5 and PDE4A were higher in OVX in comparison to sham. Differences in Ca2+ homeostasis and contractions were abolished when sham and OVX cells were dialyzed with patch pipettes containing the same concentration of 8-bromoadenosine-cAMP (50µM). Interestingly, selective inhibition of PDE4 increased Ca2+ current only in OVX cells. Together, these findings suggest that estrogen suppresses SR Ca2+ release and that this is regulated, at least in part, by the cAMP/PKA pathway. These changes in the cAMP/PKA pathway may promote Ca2+ dysregulation and cardiovascular disease when ovarian estrogen levels fall. These results advance our understanding of female-specific cardiomyocyte mechanisms that may affect responses to therapeutic interventions in older women.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Acoplamento Excitação-Contração , Miocárdio/metabolismo , Ovariectomia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Adenilil Ciclases/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Feminino , Isoquinolinas/farmacologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Tamanho do Órgão/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Rolipram/farmacologia , Retículo Sarcoplasmático/metabolismo , Sulfonamidas/farmacologia
14.
J Nurs Adm ; 47(7-8): 399-403, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678052

RESUMO

As healthcare systems continue to design care models responsive to payment changes and the assumption of clinical and financial risk, the need exists for a comprehensive approach to address cross-continuum care transitions. This article will highlight key learnings from the Nurse Executive Center's research on achieving care continuity. The business case for developing a cross-continuum care transition strategy will be discussed, as well as systemic enablers for the achievement of seamless care. A case study example of 1 system's solution for supporting the multiple comorbid patient population as part of its cross-continuum care transition strategy will be examined.


Assuntos
Comorbidade , Continuidade da Assistência ao Paciente/organização & administração , Enfermeiros Administradores/organização & administração , Cuidados de Enfermagem/organização & administração , Papel Profissional , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Texas
15.
J Physiol ; 594(23): 7105-7126, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598221

RESUMO

KEY POINTS: Sinoatrial node (SAN) function declines with age; however, not all individuals age at the same rate and health status can vary from fit to frail. Frailty was quantified in young and aged mice using a non-invasive frailty index so that the impacts of age and frailty on heart rate and SAN function could be assessed. SAN function was impaired in aged mice due to alterations in electrical conduction, changes in SAN action potential morphology and fibrosis in the SAN. Changes in SAN function, electrical conduction, action potential morphology and fibrosis were correlated with, and graded by, frailty. This study shows that mice of the same chronological age have quantifiable differences in health status that impact heart rate and SAN function and that these differences in health status can be identified using our frailty index. ABSTRACT: Sinoatrial node (SAN) dysfunction increases with age, although not all older adults are affected in the same way. This is because people age at different rates and individuals of the same chronological age vary in health status from very fit to very frail. Our objective was to determine the impacts of age and frailty on heart rate (HR) and SAN function using a new model of frailty in ageing mice. Frailty, which was quantified in young and aged mice using a frailty index (FI), was greater in aged vs. young mice. Intracardiac electrophysiology demonstrated that HR was reduced whereas SAN recovery time (SNRT) was prolonged in aged mice; however, both parameters showed heteroscedasticity suggesting differences in health status among mice of similar chronological age. Consistent with this, HR and corrected SNRT were correlated with, and graded by, FI score. Optical mapping of the SAN demonstrated that conduction velocity (CV) was reduced in aged hearts in association with reductions in diastolic depolarization (DD) slope and action potential (AP) duration. In agreement with in vivo results, SAN CV, DD slope and AP durations all correlated with FI score. Finally, SAN dysfunction in aged mice was associated with increased interstitial fibrosis and alterations in expression of matrix metalloproteinases, which also correlated with frailty. These findings demonstrate that age-related SAN dysfunction occurs in association with electrical and structural remodelling and that frailty is a critical determinant of health status of similarly aged animals that correlates with changes in HR and SAN function.


Assuntos
Envelhecimento/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação , Animais , Fibrose , Frequência Cardíaca , Masculino , Camundongos Endogâmicos C57BL , Nó Sinoatrial/patologia
16.
J Biol Chem ; 290(7): 4319-29, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25538247

RESUMO

Pterin-4a-carbinolamine dehydratase (PCD) is a highly conserved enzyme that evolved a second, unrelated function in mammals, as a transcriptional coactivator. As a coactivator, PCD is known as DCoH or dimerization cofactor of the transcription factor HNF-1. These two activities are associated with a change in oligomeric state: from two dimers interacting as an enzyme in the cytoplasm to a dimer interacting with a dimer of HNF-1 in the nucleus. The same interface of DCoH forms both complexes. To determine how DCoH partitions between its two functions, we studied the folding and stability of the DCoH homotetramer. We show that the DCoH1 homotetramer is kinetically trapped, meaning once it forms it will not dissociate to interact with HNF-1. In contrast, DCoH2, a paralog of DCoH1, unfolds within hours. A simple mutation in the interface of DCoH2 from Ser-51 to Thr, as found in DCoH1, increases the kinetic stability by 9 orders of magnitude, to τ(½) ∼ 2 million years. This suggests that the DCoH1·HNF-1 complex must co-fold to interact. We conclude that simple mutations can dramatically affect the dissociation kinetics of a complex. Residue 51 represents a "kinetic hot spot" instead of a "thermodynamic hot spot." Kinetic regulation allows PCD to adopt two distinct functions. Mutations in DCoH1 associated with diabetes affect both functions of DCoH1, perhaps by disrupting the balance between the two DCoH complexes.


Assuntos
Hidroliases/química , Hidroliases/metabolismo , Serina/metabolismo , Treonina/metabolismo , Animais , Cromatografia em Gel , Cristalografia por Raios X , Hidroliases/genética , Cinética , Camundongos , Modelos Moleculares , Mutação/genética , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Serina/química , Serina/genética , Treonina/química , Treonina/genética , Água/química
17.
Eur J Immunol ; 45(3): 854-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25487143

RESUMO

Targeting antigens to dendritic cell (DC) surface receptors using antibodies has been successfully used to generate strong immune responses and is currently in clinical trials for cancer immunotherapy. Whilst cancer immunotherapy focuses on the induction of CD8(+) T-cell responses, many successful vaccines to pathogens or their toxins utilize humoral immunity as the primary effector mechanism. Universally, these approaches have used adjuvants or pathogen material that augment humoral responses. However, adjuvants are associated with safety issues. One approach, successfully used in the mouse, to generate strong humoral responses in the absence of adjuvant is to target antigen to Clec9A, also known as DNGR-1, a receptor on CD8α(+) DCs. Here, we address two issues relating to clinical application. First, we address the issue of variable adjuvant-dependence for different antibodies targeting mouse Clec9A. We show that multiple sites on Clec9A can be successfully targeted, but that strong in vivo binding and provision of suitable helper T cell determinants was essential for efficacy. Second, we show that induction of humoral immunity to CLEC9A-targeted antigens is extremely effective in nonhuman primates, in an adjuvant-free setting. Our findings support extending this vaccination approach to humans and offer important insights into targeting design.


Assuntos
Anticorpos/farmacologia , Células Dendríticas/imunologia , Imunidade Humoral/efeitos dos fármacos , Lectinas Tipo C/imunologia , Adjuvantes Imunológicos , Animais , Sítios de Ligação de Anticorpos , Antígenos CD8/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Células Dendríticas/patologia , Humanos , Macaca nemestrina , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/imunologia
18.
Immunogenetics ; 68(3): 205-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26711123

RESUMO

Immune-mediated diseases are common and life-threatening disorders in dogs. Many canine immune-mediated diseases have strong breed predispositions and are believed to be inherited. However, the genetic mutations that cause these diseases are mostly unknown. As many immune-mediated diseases in humans share polymorphisms among a common set of genes, we conducted a candidate gene study of 15 of these genes across four immune-mediated diseases (immune-mediated hemolytic anemia, immune-mediated thrombocytopenia, immune-mediated polyarthritis (IMPA), and atopic dermatitis) in 195 affected and 206 unaffected dogs to assess whether causative or predictive polymorphisms might exist in similar genes in dogs. We demonstrate a strong association (Fisher's exact p = 0.0004 for allelic association, p = 0.0035 for genotypic association) between two polymorphic positions (10 bp apart) in exon 2 of one allele in DLA-79, DLA-79*001:02, and multiple immune-mediated diseases. The frequency of this allele was significantly higher in dogs with immune-mediated disease than in control dogs (0.21 vs. 0.12) and ranged from 0.28 in dogs with IMPA to 0.15 in dogs with atopic dermatitis. This allele has two non-synonymous substitutions (compared with the reference allele, DLA-79*001:01), resulting in F33L and N37D amino acid changes. These mutations occur in the peptide-binding pocket of the protein, and based upon our computational modeling studies, are likely to affect critical interactions with the peptide N-terminus. Further studies are warranted to confirm these findings more broadly and to determine the specific mechanism by which the identified variants alter canine immune system function.


Assuntos
Alelos , Doenças do Cão/genética , Doenças do Cão/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Doenças do Sistema Imunitário/veterinária , Substituição de Aminoácidos , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Sítios de Ligação , Cães , Éxons , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Antígenos de Histocompatibilidade Classe I/química , Metanálise como Assunto , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
19.
J Mol Cell Cardiol ; 82: 125-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25754673

RESUMO

Cardiovascular autonomic neuropathy (CAN) is a serious complication of diabetes mellitus that impairs autonomic regulation of heart rate (HR). This has been attributed to damage to the nerves that modulate spontaneous pacemaker activity in the sinoatrial node (SAN). Our objective was to test the hypothesis that impaired parasympathetic regulation of HR in diabetes is due to reduced responsiveness of the SAN to parasympathetic agonists. We used the Akita mouse model of type 1 diabetes to study the effects of the parasympathetic agonist carbachol (CCh) on SAN function using intracardiac programmed stimulation, high resolution optical mapping and patch-clamping of SAN myocytes. CCh decreased HR by 30% and increased corrected SAN recovery time (cSNRT) by 123% in wildtype mice. In contrast, CCh only decreased HR by 12%, and only increased cSNRT by 37% in Akita mice. These alterations were due to smaller effects of CCh on SAN electrical conduction and spontaneous action potential firing in isolated SAN myocytes. Voltage clamp experiments demonstrate that the acetylcholine-activated K(+) current (IKACh) is reduced in Akita SAN myocytes due to enhanced desensitization and faster deactivation kinetics. These IKACh alterations were normalized by treating Akita SAN myocytes with PI(3,4,5)P3 or an inhibitor of regulator of G-protein signaling 4 (RGS4). There was no difference in the effects of CCh on the hyperpolarization-activated current (If) between wildtype and Akita mice. Our study demonstrates that Akita diabetic mice demonstrate impaired parasympathetic regulation of HR and SAN function due to reduced responses of the SAN to parasympathetic agonists. Our experiments demonstrate a key role for insulin-dependent phosphoinositide 3-kinase (PI3K) signaling in the parasympathetic dysfunction seen in the SAN in diabetes.


Assuntos
Sistema Nervoso Parassimpático/fisiopatologia , Nó Sinoatrial/inervação , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Carbacol/farmacologia , Cardiotônicos/farmacologia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/fisiopatologia , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insulina/administração & dosagem , Insulina/farmacologia , Camundongos , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas RGS/antagonistas & inibidores , Proteínas RGS/metabolismo , Nó Sinoatrial/efeitos dos fármacos
20.
J Physiol ; 593(5): 1127-46, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25641115

RESUMO

Natriuretic peptides (NPs) are critical regulators of the cardiovascular system that are currently viewed as possible therapeutic targets for the treatment of heart disease. Recent work demonstrates potent NP effects on cardiac electrophysiology, including in the sinoatrial node (SAN) and atria. NPs elicit their effects via three NP receptors (NPR-A, NPR-B and NPR-C). Among these receptors, NPR-C is poorly understood. Accordingly, the goal of this study was to determine the effects of NPR-C ablation on cardiac structure and arrhythmogenesis. Cardiac structure and function were assessed in wild-type (NPR-C(+/+)) and NPR-C knockout (NPR-C(-/-)) mice using echocardiography, intracardiac programmed stimulation, patch clamping, high-resolution optical mapping, quantitative polymerase chain reaction and histology. These studies demonstrate that NPR-C(-/-) mice display SAN dysfunction, as indicated by a prolongation (30%) of corrected SAN recovery time, as well as an increased susceptibility to atrial fibrillation (6% in NPR-C(+/+) vs. 47% in NPR-C(-/-)). There were no differences in SAN or atrial action potential morphology in NPR-C(-/-) mice; however, increased atrial arrhythmogenesis in NPR-C(-/-) mice was associated with reductions in SAN (20%) and atrial (15%) conduction velocity, as well as increases in expression and deposition of collagen in the atrial myocardium. No differences were seen in ventricular arrhythmogenesis or fibrosis in NPR-C(-/-) mice. This study demonstrates that loss of NPR-C results in SAN dysfunction and increased susceptibility to atrial arrhythmias in association with structural remodelling and fibrosis in the atrial myocardium. These findings indicate a critical protective role for NPR-C in the heart.


Assuntos
Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Receptores do Fator Natriurético Atrial/genética , Nó Sinoatrial/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Colágeno/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Receptores do Fator Natriurético Atrial/metabolismo , Nó Sinoatrial/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA