Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 16: 792, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26470705

RESUMO

BACKGROUND: The avian eggshell membranes surround the egg white and provide a structural foundation for calcification of the eggshell which is essential for avian reproduction; moreover, it is also a natural biomaterial with many potential industrial and biomedical applications. Due to the insoluble and stable nature of the eggshell membrane fibres, their formation and protein constituents remain poorly characterized. The purpose of this study was to identify genes encoding eggshell membrane proteins, particularly those responsible for its structural features, by analyzing the transcriptome of the white isthmus segment of the oviduct, which is the specialized region responsible for the fabrication of the membrane fibres. RESULTS: The Del-Mar 14 K chicken microarray was used to investigate up-regulated expression of transcripts in the white isthmus (WI) compared with the adjacent magnum (Ma) and uterine (Ut) segments of the hen oviduct. Analysis revealed 135 clones hybridizing to over-expressed transcripts (WI/Ma + WI/Ut), and corresponding to 107 NCBI annotated non-redundant Gallus gallus gene IDs. This combined analysis revealed that the structural proteins highly over-expressed in the white isthmus include collagen X (COL10A1), fibrillin-1 (FBN1) and cysteine rich eggshell membrane protein (CREMP). These results validate previous proteomics studies which have identified collagen X (α-1) and CREMP in soluble eggshell extracts. Genes encoding collagen-processing enzymes such as lysyl oxidase homologs 1, 2 and 3 (LOXL1, LOXL2 and LOXL3), prolyl 4 hydroxylase subunit α-2 and beta polypeptide (P4HA2 and P4HB) as well as peptidyl-prolyl cis-trans isomerase C (PPIC) were also over-expressed. Additionally, genes encoding proteins known to regulate disulfide cross-linking, including sulfhydryl oxidase (QSOX1) and thioredoxin (TXN), were identified which suggests that coordinated up-regulation of genes in the white isthmus is associated with eggshell membrane fibre formation. CONCLUSIONS: The present study has identified genes associated with the processing of collagen, other structural proteins, and disulfide-mediated cross-linking during eggshell membrane formation in the white isthmus. Identification of these genes will provide new insight into eggshell membrane structure and mechanisms of formation that will assist in the development of selection strategies to improve eggshell quality and food safety of the table egg.


Assuntos
Galinhas/genética , Proteínas do Ovo/genética , Casca de Ovo/metabolismo , Membranas/metabolismo , Animais , Galinhas/metabolismo , Colágeno/genética , Biologia Computacional , Proteínas do Ovo/biossíntese , Feminino , Fibrilinas , Regulação da Expressão Gênica , Membranas/ultraestrutura , Proteínas dos Microfilamentos/genética
2.
J Food Prot ; 85(1): 85-97, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34499732

RESUMO

ABSTRACT: A group of experts from all Canadian federal food safety partners was formed to monitor the potential issues relating to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) food contamination, to gather and consider all of the relevant evidence and to determine the impact for Canadian food safety. A comprehensive risk pathway was generated to consider the likelihood of a SARS-CoV-2 contamination event at any of the relevant steps of the food processing and handling chain and the potential for exposure and transmission of the virus to the consumer. The scientific evidence was reviewed and assessed for each event in the pathway, taking into consideration relevant elements that could increase or mitigate the risk of contamination. The advantage of having an event-wise contextualization of the SARS-CoV-2 transmission pathway through the food chain is that it provides a systematic and consistent approach to evaluate any new data and communicate its importance and impact. The pathway also increases the objectivity and consistency of the assessment in a rapidly evolving and high-stakes situation. Based on our review and analysis, there is currently no comprehensive epidemiological evidence of confirmed cases of SARS-CoV-2, or its known variants, causing coronavirus disease 2019 from transmission through food or food packaging. Considering the remote possibility of exposure through food, the likelihood of exposure by ingestion or contact with mucosa is considered negligible to very low, and good hygiene practices during food preparation should continue to be followed.


Assuntos
COVID-19 , SARS-CoV-2 , Canadá , Cadeia Alimentar , Humanos , Higiene
3.
J Food Prot ; 84(8): 1295-1303, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770187

RESUMO

ABSTRACT: A new coronavirus strain known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. This virus is the causative agent for coronavirus disease 2019 (COVID-19) and spreads primarily through human-to-human transmission via infected droplets and aerosols generated by infected persons. Although COVID-19 is a respiratory virus, the potential for transmission of SARS-CoV-2 via food is considered theoretically possible and remains a concern for Canadian consumers. We have conducted an exposure assessment of the likelihood of exposure of SARS-CoV-2 in Canadian food sources at the time of consumption. This article describes the exposure routes considered most relevant in the context of food contamination with SARS-CoV-2, including contaminated food of animal origin, other contaminated fresh foods, fomites, and SARS-CoV-2-contaminated feces. The likelihood of foodborne infection of SARS-CoV-2 via the human digestive tract also was considered. Our analysis indicates that there is no evidence that foodborne transmission of SARS-CoV-2 has occurred, and we consider the likelihood of contracting COVID-19 via food and food packaging in Canada as low to remote. Adherence to safe food practices and cleaning procedures would in any case prevent a potential foodborne infection with SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , Animais , Canadá , Fezes , Humanos
4.
Sci Rep ; 7: 45980, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378802

RESUMO

Staphylococcus aureus, a human pathogen associated with many illnesses and post-surgical infections, can resist treatment due to the emergence of antibiotic-resistant strains and through biofilm formation. The current treatments for chronic biofilm infections are antibiotics and/or surgical removal of the contaminated medical device. Due to higher morbidity and mortality rates associated with overuse/misuse of antibiotics, alternate treatments are essential. This study reports the antibiofilm activity of avian erythrocyte histones against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Fluorescence and scanning electron microscopy revealed membrane damage to bacteria in histone-treated biofilms. Histones and indolicidin (positive control) increased the expression of apsS and apsR, which are associated with the Antimicrobial Peptide (AMP) sensor/regulator system in S. aureus. The expression of dltB, and vraF, associated with AMP resistance mechanisms, were under histone inducible control in the biofilm-embedded bacterial cells. The time kill kinetics for histones against S. aureus revealed a rapid biocidal activity (<5 min). Purified erythrocyte-specific histone H5 possessed 3-4 fold enhanced antimicrobial activity against planktonic cells compared to the histone mixture (H1, H2A, H2B, H3, H4, H5). These results demonstrate the promise of histones and histone-like derivatives as novel antibiotics against pathogens in their planktonic and biofilm forms.


Assuntos
Biofilmes/efeitos dos fármacos , Galinhas/metabolismo , Eritrócitos/química , Histonas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Meticilina/farmacologia , Animais , Anti-Infecciosos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Precipitação Química , Cromatografia Líquida , Densitometria , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/isolamento & purificação , Cinética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Modelos Biológicos , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem , Fatores de Tempo
5.
J Proteomics ; 116: 81-96, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25585129

RESUMO

Calcitic biomineralization is essential for otoconia formation in vertebrates. This process is characterized by protein-crystal interactions that modulate crystal growth on an extracellular matrix. An excellent model for the study of calcitic biomineralization is the avian eggshell, the fastest known biomineralization process. The objective of this study is to identify and characterize matrix proteins associated with the eggshell mammillary cones, which are hypothesized to regulate the earliest stage of eggshell calcification. Mammillary cones were isolated from 2 models, fertilized and unfertilized, and the released proteins were identified by RP-nanoLC and ES-MS/MS proteomics. Proteomics analysis identified 49 proteins associated with the eggshell membrane fibers and, importantly, 18 mammillary cone-specific proteins with an additional 18 proteins identified as enriched in the mammillary cones. Among the most promising candidates for modulating protein-crystal interactions were extracellular matrix proteins, including ABI family member 3 (NESH) binding protein (ABI3BP), tiarin-like, hyaluronan and proteoglycan link protein 3 (HAPLN3), collagen alpha-1(X), collagen alpha-1(II) and fibronectin, in addition to the calcium binding proteins calumenin, EGF-like repeats and discoidin 1-like domains 3 (EDIL3), nucleobindin-2 and SPARC. In conclusion, we identified several cone-resident proteins that are candidates to regulate initiation of eggshell calcification. Further study of these proteins will determine their roles in modulating calcitic biomineralization and lead to insight into the process of otoconia formation/regeneration. BIOLOGICAL SIGNIFICANCE: Biomineralization is essential for the development of hard tissues in vertebrates, which includes both calcium phosphate and calcium carbonate structures. Calcitic mineralization by calcium carbonate is an important process in the formation of otoconia, which are gravity receptor organs located in the inner ear and are responsible for balance and for sensing linear acceleration. Deficiencies in the regulation of their biomineralization can lead to otoconia degeneration and eventually benign paroxysmal position vertigo (BPPV), which is the main cause of vertigo in humans. Eggshell formation in chicken is one of the fastest known biomineralization processes and is an excellent model for the study of calcitic biomineralization. Cross-analysis of proteomic data from two mineralized models, fertilized and unfertilized chicken eggshells, identified proteins associated with the mammillary cones that are the sites of initiation of eggshell formation. We hypothesize that these proteins regulate the earliest stages of eggshell calcification. The human homologs of these proteins are therefore potential candidates to play a role in otoconia biomineralization.


Assuntos
Calcificação Fisiológica/fisiologia , Proteínas do Ovo/metabolismo , Proteoma/metabolismo , Proteômica , Zigoto/metabolismo , Animais , Galinhas , Humanos
6.
J Proteomics ; 75(9): 2697-706, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22708129

RESUMO

The cuticle is the outermost layer of the avian eggshell, whose protein constituents remain virtually unknown. We hypothesize that cuticle components play a major role in microbial resistance, since eggs with incomplete or absent cuticle are more susceptible to bacterial contamination. In this study we extracted proteins from the outermost non-calcified layer of the cuticle of chicken eggs and subjected them to LC/MS/MS proteomic analysis. We identified 47 cuticle proteins with high confidence and reproducibility. Two proteins, similar to Kunitz-like protease inhibitor and ovocalyxin-32 (a carboxypeptidase A inhibitor), were the most abundant of the cuticle proteins. A number of proteins known to have antimicrobial activity in the egg were detected (lysozyme C, ovotransferrin, ovocalyxin-32, cystatin, ovoinhibitor) as well as possible new candidates (myeloperoxidase, ovocalyxin-36 and members of the SERPIN family). This is the first comprehensive report of cuticle proteome, a starting point to determine cuticle function and the molecular basis of its antimicrobial properties.


Assuntos
Proteínas do Ovo/análise , Casca de Ovo/química , Proteômica , Animais , Galinhas , Cromatografia Líquida , Proteínas do Ovo/isolamento & purificação , Inibidores de Proteases/isolamento & purificação , Proteoma/análise , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA