Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Diabetologia ; 65(1): 173-187, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554282

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is characterised by islet amyloid and toxic oligomers of islet amyloid polypeptide (IAPP). We posed the questions, (1) does IAPP toxicity induce an islet response comparable to that in humans with type 2 diabetes, and if so, (2) what are the key transcriptional drivers of this response? METHODS: The islet transcriptome was evaluated in five groups of mice: beta cell specific transgenic for (1) human IAPP, (2) rodent IAPP, (3) human calpastatin, (4) human calpastatin and human IAPP, and (5) wild-type mice. RNA sequencing data was analysed by differential expression analysis and gene co-expression network analysis to establish the islet response to adaptation to an increased beta cell workload of soluble rodent IAPP, the islet response to increased expression of oligomeric human IAPP, and the extent to which the latter was rescued by suppression of calpain hyperactivation by calpastatin. Rank-rank hypergeometric overlap analysis was used to compare the transcriptome of islets from human or rodent IAPP transgenic mice vs humans with prediabetes or type 2 diabetes. RESULTS: The islet transcriptomes in humans with prediabetes and type 2 diabetes are remarkably similar. Beta cell overexpression of soluble rodent or oligomer-prone human IAPP induced changes in islet transcriptome present in prediabetes and type 2 diabetes, including decreased expression of genes that confer beta cell identity. Increased expression of human IAPP, but not rodent IAPP, induced islet inflammation present in prediabetes and type 2 diabetes in humans. Key mediators of the injury responses in islets transgenic for human IAPP or those from individuals with type 2 diabetes include STAT3, NF-κB, ESR1 and CTNNB1 by transcription factor analysis and COL3A1, NID1 and ZNF800 by gene regulatory network analysis. CONCLUSIONS/INTERPRETATION: Beta cell injury mediated by IAPP is a plausible mechanism to contribute to islet inflammation and dedifferentiation in type 2 diabetes. Inhibition of IAPP toxicity is a potential therapeutic target in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Amiloide/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Transgênicos , Transcriptoma/genética
2.
Diabetologia ; 63(1): 149-161, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31720731

RESUMO

AIMS/HYPOTHESIS: The conserved hypoxia inducible factor 1 α (HIF1α) injury-response pro-survival pathway has recently been implicated in early beta cell dysfunction but slow beta cell loss in type 2 diabetes. We hypothesised that the unexplained prolonged prediabetes phase in type 1 diabetes may also be, in part, due to activation of the HIF1α signalling pathway. METHODS: RNA sequencing (RNA-Seq) data from human islets with type 1 diabetes or after cytokine exposure in vitro was evaluated for activation of HIF1α targets. This was corroborated by immunostaining human pancreases from individuals with type 1 diabetes for 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), the key effector of HIF1α-mediated metabolic remodelling, and by western blotting of islets and INS-1 832/13 cells exposed to cytokines implicated in type 1 diabetes. RESULTS: HIF1α signalling is activated (p = 4.5 × 10-9) in islets from individuals with type 1 diabetes, and in human islets exposed in vitro to cytokines implicated in type 1 diabetes (p = 1.1 × 10-14). Expression of PFKFB3 is increased fivefold (p < 0.01) in beta cells in type 1 diabetes and in human and rat islets exposed to cytokines that induced increased lactate production. HIF1α attenuates cytokine-induced cell death in beta cells. CONCLUSIONS/INTERPRETATION: The conserved pro-survival HIF1α-mediated injury-response signalling is activated in beta cells in type 1 diabetes and likely contributes to the relatively slow rate of beta cell loss at the expense of early defective glucose-induced insulin secretion.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Secretoras de Insulina/metabolismo , Fosfofrutoquinase-2/metabolismo , Adulto , Idoso de 80 Anos ou mais , Animais , Western Blotting , Linhagem Celular Tumoral , Criança , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imuno-Histoquímica , Imunoprecipitação , Masculino , Fosfofrutoquinase-2/genética , Ratos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Adulto Jovem
3.
Diabetologia ; 62(6): 1000-1010, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30852627

RESUMO

AIMS/HYPOTHESIS: Islet amyloid polypeptide (IAPP) misfolding and toxic oligomers contribute to beta cell loss and stress in type 2 diabetes. Pregnancy-related diabetes predicts subsequent risk for type 2 diabetes but little is known about the impact of pregnancy on beta cell mass, turnover and stress. Availability of human pancreas tissue in pregnancy is limited and most widely used mouse models of type 2 diabetes do not develop pregnancy-related diabetes, possibly because rodent IAPP is not prone to form toxic oligomers. We hypothesised that mice transgenic for human IAPP (hIAPP) are prone to pregnancy-related diabetes with beta cell responses reflective of those in type 2 diabetes. METHODS: We evaluated the impact of a first and second pregnancy on glucose homeostasis, beta cell mass and turnover and markers of beta cell stress in hIAPP transgenic (hTG) mice. RESULTS: Pregnancy induced both endoplasmic reticulum stress and oxidative stress and compromised autophagy in beta cells in hTG mice, which are characteristic of beta cells in type 2 diabetes. Beta cell stress persisted after pregnancy, resulting in subsequent diabetes before or during a second pregnancy. CONCLUSIONS/INTERPRETATION: High expression of hIAPP in response to pregnancy recapitulates mechanisms contributing to beta cell stress in type 2 diabetes. We hypothesise that, in individuals prone to type 2 diabetes, pregnancy-induced increased expression of IAPP inflicts beta cell damage that persists and is compounded by subsequent additive stress such as further pregnancy. The hTG mouse model is a novel model for pregnancy-related diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Autofagia/fisiologia , Dano ao DNA/genética , Dano ao DNA/fisiologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/fisiologia , Gravidez
4.
Front Mol Biosci ; 10: 1096286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814640

RESUMO

Insulin resistance is the major risk factor for Type 2 diabetes (T2D). In vulnerable individuals, insulin resistance induces a progressive loss of insulin secretion with islet pathology revealing a partial deficit of beta cells and islet amyloid derived from islet amyloid polypeptide (IAPP). IAPP is co-expressed and secreted with insulin by beta cells, expression of both proteins being upregulated in response to insulin resistance. If IAPP expression exceeds the threshold for clearance of misfolded proteins, beta cell failure occurs exacerbated by the action of IAPP toxicity to compromise the autophagy lysosomal pathway. We postulated that suppression of IAPP expression by an IAPP antisense oligonucleotide delivered to beta cells by the GLP-1 agonist exenatide (eGLP1-IAPP-ASO) is a potential disease modifying therapy for T2D. While eGLP1-IAPP-ASO suppressed mouse IAPP and transgenic human IAPP expression in mouse islets, it had no discernable effects on IAPP expression in human islets under the conditions studied. Suppression of transgenic human IAPP expression in mouse islets attenuated disruption of the autophagy lysosomal pathway in beta cells, supporting the potential of this strategy.

5.
Commun Biol ; 4(1): 594, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012065

RESUMO

Type 2 diabetes is characterized by ß and α cell dysfunction. We used phasor-FLIM (Fluorescence Lifetime Imaging Microscopy) to monitor oxidative phosphorylation and glycolysis in living islet cells before and after glucose stimulation. In healthy cells, glucose enhanced oxidative phosphorylation in ß cells and suppressed oxidative phosphorylation in α cells. In Type 2 diabetes, glucose increased glycolysis in ß cells, and only partially suppressed oxidative phosphorylation in α cells. FLIM uncovers key perturbations in glucose induced metabolism in living islet cells and provides a sensitive tool for drug discovery in diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Imagem Molecular/métodos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Glucagon/efeitos dos fármacos , Glicólise , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Microscopia de Fluorescência , Fosforilação Oxidativa , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
6.
Case Rep Endocrinol ; 2019: 5863569, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949959

RESUMO

There is unexplained deficit in size and function of the exocrine pancreas in type 1 diabetes (T1D). We obtained pancreas from an individual with pre-T1D obtained at surgery and addressed the question, what is the relative inflammation in the exocrine and endocrine pancreas in pre-T1D in the absence of the potential confounding changes at autopsy or in brain dead organ donors. Pancreas was removed surgically from a 36 year woman for benign neuroendocrine tumors (NET). The patient had gestational diabetes at age 29 and has a 23 year old sister with T1D. Pre-operative fasting glucose of 109 mg/dl and HbA1C 5.8% revealed prediabetes with an anti-GAD 1,144 (5-250 U/ml) together with family history implying pre-T1D. There was patchy low grade immune infiltration in some, but not all, islets that met criteria for autoimmune insulitis. The exocrine pancreas showed more abundant inflammation with areas of chronic pancreatitis and acinar to ductal metaplasia, and with other areas of atrophy and fatty infiltration. In pre-T1D inflammation may be more prominent in the exocrine than the endocrine pancreas, calling into question the sequence of events and assumed islet centric basis of autoimmunity leading to T1D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA