Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(9): 4762-4771, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38385169

RESUMO

The antigen density on the surface of HIV-based virus-like particles (VLPs) plays a crucial role in the improvement of HIV vaccine potency. HIV VLPs consist of a dense protein core, which is surrounded by a lipid bilayer and whose surface is usually decorated with antigenic glycoproteins. The successful downstream processing of these particles is challenging, and the high-resolution and cost-efficient purification of HIV-based VLPs has not yet been achieved. Chromatography, one of the major unit operations involved in HIV VLP purification strategies, is usually carried out by means of ion exchangers or ion-exchange membranes. Understanding the electrokinetic behavior of HIV-based VLPs may help to improve the adjustment and efficiency of the corresponding chromatographic processes. In this study, we investigated the electrokinetics and aggregation of both undecorated and decorated VLPs and interpreted the data from the perspective of the soft particle model developed by Ohshima (OSPM), which fails to fully predict the behavior of the studied VLPs. Post-Ohshima literature, and particularly the soft multilayer particle model developed by Langlet et al., provides an alternative theoretical framework to overcome the limits of the OSPM. We finally hypothesized that the electrophoretic mobility of HIV-based VLPs is controlled by an electrohydrodynamic interplay between envelope glycoproteins, lipid bilayer, and Gag envelope.


Assuntos
Infecções por HIV , Vacinas de Partículas Semelhantes a Vírus , Humanos , Vacinas de Partículas Semelhantes a Vírus/química , Bicamadas Lipídicas , Infecções por HIV/prevenção & controle , Glicoproteínas
2.
Antibodies (Basel) ; 12(3)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37753971

RESUMO

Efficient induction of target-specific antibodies can be elicited upon immunization with highly immunogenic virus-like particles (VLPs) decorated with desired membrane-anchored target antigens (Ags). However, for example, for diagnostic purposes, monoclonal antibodies (mAbs) are required to enable the histological examination of formaldehyde-fixed paraffin-embedded (FFPE) biopsy tissue samples. Aiming at the generation of FFPE-antigen-specific mAbs and as a proof of concept (POC), we first established a simplified protocol using only formaldehyde and 90 °C heat fixation (FF90) of cells expressing the target Ag nerve growth factor receptor (NGFR). The FF90 procedure was validated using flow cytometric analysis and two mAbs recognizing either the native and FFPE-Ag or exclusively the native Ag. C-terminally truncated NGFR (trNGFR)-displaying native and FF90-treated VLPs derived from HIV-1 did not reveal distinctive changes in particle morphology using transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. Mice were subsequently repetitively immunized with trNGFR-decorated FF90-VLPs and hybridoma technology was used to establish mAb-producing cell clones. In multiple screening rounds, nine cell clones were identified producing mAbs distinctively recognizing epitopes in FF90- and FFPE-NGFR. This POC of a new methodology should foster the future generation of mAbs selectively targeting FFPE-fixed cell-surface Ags.

3.
J Vis Exp ; (180)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35225285

RESUMO

The virus-like particle (VLP) capture assay is an immunoprecipitation method, commonly known as a 'pull-down assay' used to purify and isolate antigen-displaying VLPs. Surface antigen-specific antibodies are coupled to, and thus immobilized on a solid and insoluble matrix such as beads. Due to their high affinity to the target antigen, these antibodies can capture VLPs decorated with the cognate antigen anchored in the membrane envelope of the VLPs. This protocol describes the binding of antigen-specific antibodies to protein A- or G-conjugated magnetic beads. In our study, human immunodeficiency virus (HIV)-derived VLPs formed by the group-specific antigen (Gag) viral core precursor protein p55 Gag and displaying the envelope glycoproteins (Env) of HIV are examined. The VLPs are captured utilizing broadly neutralizing antibodies (bNAbs) directed against neutralization-sensitive epitopes in Env. The VLP capture assay outlined here represents a sensitive and easy-to-perform method to demonstrate that (i) the VLPs are decorated with the respective target antigen, (ii) the surface antigen retained its structural integrity as demonstrated by the epitope-specific binding of bNAbs used in the assay and (iii) the structural integrity of the VLPs revealed by the detection of Gag proteins in a subsequent Western blot-analysis. Consequently, the utilization of bNAbs for immunoprecipitation facilitates a prediction of whether VLP vaccines will be able to elicit a neutralizing B cell response in vaccinated humans. We anticipate that this protocol will furnish other researchers with a valuable and straightforward experimental approach to examine potential VLP-based vaccines.


Assuntos
Infecções por HIV , Vacinas de Partículas Semelhantes a Vírus , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos , Humanos , Vacinas de Partículas Semelhantes a Vírus/química
4.
Virology ; 568: 41-48, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101772

RESUMO

The sequence diversity of HIV-1 is the biggest hurdle for the design of a prophylactic vaccine. Mosaic (Mos) antigens consisting of synthetically shuffled epitopes from various HIV-1 strains are currently tested in the clinical vaccine trial Mosaico (NCT03964415). Besides adenovirus vectors encoding variants of Mos.Gag-Pol and soluble Mos.Env proteins, the Mosaico vaccine entails vectors mediating gene transfer and expression of the membrane-anchored Env-variant Mos2S.Env. We thus examined whether the expression of mosaic Gag mediates the formation of virus-like particles (VLPs). Mos1.Gag- and Mos2.Gag-VLP-formation was readily detected using Western blot- and electron microscopic-analysis. Upon co-expression of both mosaic Gag variants with Mos2S.Env, incorporation of Env into Gag-formed VLPs was observed. The display of the respective neutralization-sensitive target epitopes on Mos2S.Env-decorated VLPs was demonstrated employing a panel of broadly neutralizing antibodies (bNAbs) in a VLP-capture assay. This opens new perspectives for future HIV vaccine designs.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Especificidade de Anticorpos/imunologia , Epitopos/genética , Epitopos/imunologia , Ordem dos Genes , Vetores Genéticos/genética , Infecções por HIV/prevenção & controle , Interações Hospedeiro-Patógeno , Humanos , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
5.
Toxins (Basel) ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35202165

RESUMO

Different mechanisms mediate the toxicity of RNA. Genomic retroviral mRNA hijacks infected host cell factors to enable virus replication. The viral genomic RNA of the human immunodeficiency virus (HIV) encompasses nine genes encoding in less than 10 kb all proteins needed for replication in susceptible host cells. To do so, the genomic RNA undergoes complex alternative splicing to facilitate the synthesis of the structural, accessory, and regulatory proteins. However, HIV strongly relies on the host cell machinery recruiting cellular factors to complete its replication cycle. Antiretroviral therapy (ART) targets different steps in the cycle, preventing disease progression to the acquired immunodeficiency syndrome (AIDS). The comprehension of the host immune system interaction with the virus has fostered the development of a variety of vaccine platforms. Despite encouraging provisional results in vaccine trials, no effective vaccine has been developed, yet. However, novel promising vaccine platforms are currently under investigation.


Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Infecções por HIV/fisiopatologia , HIV/efeitos dos fármacos , HIV/genética , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Humanos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA