RESUMO
It is well accepted that Th17 cells are a highly plastic cell subset that can be easily directed toward the Th1 phenotype in vitro and also in vivo during inflammation. However, there is an ongoing debate regarding the reverse plasticity (conversion from Th1 to Th17). We show here that ectopic ROR-γt expression can restore or initiate IL-17 expression by non-classic or classic Th1 cells, respectively, while common pro-Th17 cytokine cocktails are ineffective. This stability of the Th1 phenotype is at least partially due to the presence of a molecular machinery governed by the transcription factor Eomes, which promotes IFN-γ secretion while inhibiting the expression of ROR-γt and IL-17. By using a mouse model of T cell-dependent colitis we demonstrate that Eomes controls non-classic Th1 cell development also in vivo and promotes their pathogenic potential. Eomes expression associates to a highly inflammatory phenotype also in patients with juvenile idiopathic arthritis. Indeed, it favors the acquisition of a cytotoxic signature, and promotes the development of IFN-γ+ GM-CSF+ cells that have been described to be pathogenic in chronic inflammatory disorders.
Assuntos
Artrite Juvenil/imunologia , Inflamação/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas com Domínio T/metabolismo , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Plasticidade Celular , Células Cultivadas , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Proteínas com Domínio T/genéticaRESUMO
Even if omalizumab is broadly used in the treatment of severe, allergic asthma, the immunological effects in long-term treated patients have not been fully elucidated. To this aim, a cohort of 15 allergic asthmatic patients treated with omalizumab for at least three years was compared with 12 allergic asthma patients treated with standard therapy. Omalizumab treated asthmatic patients showed lower frequencies of circulating plasmacytoid DCs, and lower CD154 expression on CD4 T-helper cells than the control group. Moreover, basophils and DCs from omalizumab-treated patients had lower surface expression of IgE compared to the control group. In a longitudinal evaluation of two patients that started omalizumab treatment, we show that FcεRI free of IgE were evident on basophils just after four weeks of drug administration. Finally, in vitro experiments with basophils obtained from healthy donors confirm that omalizumab is able to detach IgE from high affinity IgE receptors. Collectively these data indicate that long-term omalizumab treatment dampens type 2 inflammation acting on different cell types that play a pivotal role in the pathogenesis of allergic asthma. Moreover, we have identified a further mechanism of action of omalizumab, such as the ability to detach IgE from its receptor.
Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Basófilos/imunologia , Células Dendríticas/imunologia , Hipersensibilidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Omalizumab/uso terapêutico , Linfócitos T Auxiliares-Indutores/imunologia , Adulto , Idoso , Ligante de CD40/metabolismo , Células Cultivadas , Estudos de Coortes , Feminino , Seguimentos , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de IgE/metabolismo , Adulto JovemRESUMO
We recently demonstrated that human T-helper (Th) 17 cells, unlike Th1 cells, do not proliferate in response to T-cell receptor stimulation, mainly because of their reduced capacity to produce and respond to IL-2. In this study, we show that their lower responsiveness to IL-2 is due to the selective expression of Musculin (MSC), a member of the basic helix-loop-helix transcription factors. We show that MSC expression in human Th17 cells is retinoic acid orphan receptor (ROR)γt-dependent, and allows the upregulation of PPP2R2B, a regulatory member of the protein phosphatase 2A (PP2A) enzyme. High PPP2R2B levels in human Th17 cells were responsible for the reduced STAT5B Ser-193 phosphorylation upon IL-2 signalling and, therefore, impaired STAT5B DNA binding and transcriptional activity on IL-2 target genes. PP2A, observed in Th17 cells, controls also STAT3, dephosphorylating Ser727, thus increasing its activity that plays a crucial role in Th17 development and/or maintenance. Thus, our findings identify an additional mechanism responsible for the limited expansion of human Th17 cells, and could provide a further explanation for the rarity of these cells in inflamed tissues.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Inflamação/imunologia , Fator de Transcrição STAT5/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Células Cultivadas , Humanos , Interleucina-2/imunologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação para CimaRESUMO
BACKGROUND: Protection against helminths consists of adaptive responses by TH2 cells and innate responses by group 2 innate lymphoid cells (ILC2s), with these latter being well characterized in mice but less so in human subjects. OBJECTIVE: We sought to characterize human circulating ILC2s and compare their functional profile with that of autologous TH2 cells. METHODS: Circulating ILC2s and TH2 cells were isolated by means of fluorescence-activated cell sorting and magnetic cell sorting and expanded in vitro. ILC2s were then stimulated with phorbol 12-myristate 13-acetate plus ionomycin, IL-25 plus IL-33 (IL-25/IL-33), or a mixture of Toll-like receptor ligands to evaluate their ability to produce cytokines, express CD154, and induce IgE production by autologous B cells. Cytokines and transcription factor gene methylation were assessed. RESULTS: ILC2s expressed GATA-3, retinoic acid orphan receptor (RORC) 2, and RORα; were able to produce IL-5, IL-13, and IL-4; and, accordingly, were characterized by demethylation of IL4, IL13, IL5, GATA3, and RORC2, whereas the IFNG, IFNG promoter, and TBX21 regions of interest were methylated. ILC2s expressed TLR1, TLR4, and TLR6, and TLR stimulation induced IL-5 and IL-13 production. Moreover, ILC2s expressed CD154 in response to phorbol 12-myristate 13-acetate plus ionomycin, IL-25/IL-33, or a mixture of TLR ligands. Stimulated ILC2s also induced IgM, IgG, IgA, and IgE production by B cells. Finally, circulating ILC2s from atopic patients were not different in numbers and frequency but expressed higher IL-4 levels than those from nonatopic subjects. CONCLUSION: This study provides the first evidence that human ILC2s can express CD154 and stimulate the production of IgE by B lymphocytes through IL-25/IL-33 stimulation or TLR triggering.
Assuntos
Ligante de CD40/imunologia , Citocinas/imunologia , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Linfócitos/imunologia , Adolescente , Adulto , Contagem de Células , Linhagem Celular , Feminino , Fator de Transcrição GATA3/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/imunologia , Receptores do Ácido Retinoico/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Adulto JovemRESUMO
The reason why only few coeliac patients develop the cutaneous manifestation of the disease, named dermatitis herpetiformis (DH), is still unknown. Epidermal transglutaminase (TG3) has been described as the main autoantigen of humoral immunity in DH but the mechanisms leading to this autoimmune response remain obscure. Here we characterized T cells from skin, gut and peripheral blood of DH and coeliac disease (CD) patients, evaluated the impact of the gluten-free diet on circulating T lymphocytes' phenotype and investigated antigen specific T cell response toward epidermal and tissue transglutaminase (TG2). DH patients showed an increased frequency of skin-derived T cells producing TNFα when compared to CD patients. Moreover, circulating T cells producing TNFα and IL-17A positively correlated with clinical score of skin disease activity and decreased after gluten-free diet. Finally, TG2 and TG3-specific T cells resulted more reactive to antigens stimulation in DH patients and showed cross reactivity toward the two autoantigens in both the group of patients. Our data suggest a role of TNFα and IL-17A producing cells in the development of DH and, for the first time, show the existence of a crossed T cell response toward the two transglutaminases isoforms, thus suggesting new insights on T cells role in skin damage.