Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Am Chem Soc ; 146(29): 20468-20476, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38990189

RESUMO

Rare-earth elements (REEs) are present in a broad range of critical materials. The development of solid adsorbents for REE capture could enable the cost-effective recycling of REE-containing magnets and electronics. In this context, covalent organic frameworks (COFs) are promising candidates for REE adsorption due to their exceptionally high surface area. Despite having attractive physical properties, COFs are heavily underutilized for REE capture applications due to their limited lifecycle in aqueous acidic environments, as well as synthetic challenges associated with the incorporation of ligands suitable for REE capture. Here, we show how the Ugi multicomponent reaction can be leveraged to postsynthetically modify imine-based COFs for the introduction of a diglycolic acid (DGA) moiety, an efficient scaffold for REE capture. The adsorption capacity of the DGA-functionalized COF was found to be more than 40 times higher than that of the pristine imine COF precursor and more than four times higher than that of the next-best reported DGA-functionalized solid support. This rationally designed COF has appealing characteristics of high adsorption capacity, fast and efficient capture and release of the REE ions, and reliable recyclability, making it one of the most promising adsorbents for solid-liquid REE ion extractions reported to date.

2.
J Am Chem Soc ; 146(22): 15525-15537, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779810

RESUMO

Porous organic materials showcasing large framework dynamics present new paths for adsorption and separation with enhanced capacity and selectivity beyond the size-sieving limits, which is attributed to their guest-responsive sorption behaviors. Porous hydrogen-bonded crosslinked organic frameworks (HCOFs) are attractive for their remarkable ability to undergo guest-triggered expansion and contraction facilitated by their flexible covalent crosslinkages. However, the voids of HCOFs remain limited, which restrains the extent of the framework dynamics. In this work, we synthesized a series of HCOFs characterized by unprecedented size expansion capabilities induced by solvents. These HCOFs were constructed by isoreticularly co-crystallizing two complementary sets of hydrogen bonding building blocks to generate porous molecular crystals, which were crosslinked through thiol-ene/yne single-crystal-to-single-crystal transformations. The generated HCOFs exhibit enhanced chemical durability, high crystallinity, and extraordinary framework dynamics. For instance, HCOF-104 crystals featuring a pore diameter of 13.6 Å expanded in DMF to 300 ± 10% of their original lengths within just 1 min. This expansion allows the HCOFs to adsorb guest molecules that are significantly larger than the pore sizes of their crystalline states. Through methanol-induced contraction, these large guests were encapsulated in the fast-contracted HCOFs. These advancements in porous framework dynamics pave the way for new methods of encapsulating guests for targeted delivery.

3.
Mol Pharm ; 21(6): 2949-2959, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38685852

RESUMO

Crystallization is a widely used purification technique in the manufacture of active pharmaceutical ingredients (APIs) and precursor molecules. However, when impurities and desired compounds have similar molecular structures, separation by crystallization may become challenging. In such cases, some impurities may form crystalline solid solutions with the desired product during recrystallization. Understanding the molecular structure of these recrystallized solid solutions is crucial to devise methods for effective purification. Unfortunately, there are limited analytical techniques that provide insights into the molecular structure or spatial distribution of impurities that are incorporated within recrystallized products. In this study, we investigated model solid solutions formed by recrystallizing salicylic acid (SA) in the presence of anthranilic acid (AA). These two molecules are known to form crystalline solid solutions due to their similar molecular structures. To overcome challenges associated with the long 1H longitudinal relaxation times (T1(1H)) of SA and AA, we employed dynamic nuclear polarization (DNP) and 15N isotope enrichment to enable solid-state NMR experiments. Results of solid-state NMR experiments and DFT calculations revealed that SA and AA are homogeneously alloyed as a solid solution. Heteronuclear correlation (HETCOR) experiments and plane-wave DFT structural models provide further evidence of the molecular-level interactions between SA and AA. This research provides valuable insights into the molecular structure of recrystallized solid solutions, contributing to the development of effective purification strategies and an understanding of the physicochemical properties of solid solutions.


Assuntos
Isótopos de Carbono , Cristalização , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio , Ácido Salicílico , ortoaminobenzoatos , Espectroscopia de Ressonância Magnética/métodos , Ácido Salicílico/química , Cristalização/métodos , Isótopos de Nitrogênio/química , ortoaminobenzoatos/química , Isótopos de Carbono/química , Soluções/química , Estrutura Molecular
4.
Phys Chem Chem Phys ; 26(6): 5081-5096, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38259035

RESUMO

73% of all NMR-active nuclei are quadrupolar nuclei with a nuclear spin I > 1/2. The broadening of the solid-state NMR signals by the quadrupolar interaction often leads to poor sensitivity and low resolution. In this work we present experimental and theoretical investigations of magic angle spinning (MAS) 1H{X} double-echo resonance-echo saturation-pulse double-resonance (DE-RESPDOR) and Y{X} J-resolved solid-state NMR experiments for the indirect detection of spin 3/2 quadrupolar nuclei (X = spin 3/2 nuclei, Y = spin 1/2 nuclei). In these experiments, the spectrum of the quadrupolar nucleus is reconstructed by plotting the observed dephasing of the detected spin as a function of the transmitter offset of the indirectly detected spin. Numerical simulations were used to investigate the achievable levels of dephasing and to predict the lineshapes of indirectly detected NMR spectra of the quadrupolar nucleus. We demonstrate 1H, 31P and 207Pb detection of 35Cl, 81Br, and 63Cu (I = 3/2) nuclei in trans-Cl2Pt(NH3)2 (transplatin), (CH3NH3)PbCl3 (methylammonium lead chloride, MAPbCl3), (CH3NH3)PbBr3 (methylammonium lead bromide, MAPbBr3) and CH3C(CH2PPh2)3CuI (1,1,1-tris(diphenylphosphinomethyl)ethane copper(I) iodide, triphosCuI), respectively. In all of these experiments, we were able to detect megahertz wide central transition or satellite transition powder patterns. Significant time savings and gains in sensitivity were attained in several test cases. Additionally, the indirect detection experiments provide valuable structural information because they confirm the presence of dipolar or scalar couplings between the detected nucleus and the quadrupolar nucleus of interest. Finally, numerical simulations suggest these methods are also potentially applicable to abundant spin 5/2 and spin 7/2 quadrupolar nuclei.

5.
J Phys Chem A ; 128(18): 3635-3645, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38662914

RESUMO

High-field magic angle spinning (MAS) dynamic nuclear polarization (DNP) is becoming a common technique for improving the sensitivity of solid-state nuclear magnetic resonance (SSNMR) by the hyperpolarization of nuclear spins. Recently, we have shown that gamma irradiation is capable of creating long-lived free radicals that are amenable to MAS DNP in quartz and a variety of organic solids. Here, we demonstrate that ball milling is able to generate millimolar concentrations of stable radical species in diverse materials such as polystyrene, cellulose, borosilicate glass, and fused quartz. High-field electron paramagnetic resonance (EPR) was used to obtain further insight into the nature of the radicals formed in ball milled quartz and borosilicate glass. We further show that radicals generated in quartz by ball milling can be used for solid-effect DNP. We obtained 29Si DNP enhancements of approximately 114 and 33 at 110 K and room temperature, respectively, from a sample of ball milled quartz.

6.
J Am Chem Soc ; 145(30): 16429-16448, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466972

RESUMO

Semiconductors are commonly divided into materials with direct or indirect band gaps based on the relative positions of the top of the valence band and the bottom of the conduction band in crystal momentum (k) space. It has, however, been debated if k is a useful quantum number to describe the band structure in quantum-confined nanocrystalline systems, which blur the distinction between direct and indirect gap semiconductors. In bulk III-V semiconductor alloys like In1-xGaxP, the band structure can be tuned continuously from the direct- to indirect-gap by changing the value of x. The effect of strong quantum confinement on the direct-to-indirect transition in this system has yet to be established because high-quality colloidal nanocrystal samples have remained inaccessible. Herein, we report one of the first systematic studies of ternary III-V nanocrystals by utilizing an optimized molten-salt In-to-Ga cation exchange protocol to yield bright In1-xGaxP/ZnS core-shell particles with photoluminescence quantum yields exceeding 80%. We performed two-dimensional solid-state NMR studies to assess the alloy homogeneity and the extent of surface oxidation in In1-xGaxP cores. The radiative decay lifetime for In1-xGaxP/ZnS monotonically increases with higher gallium content. Transient absorption studies on In1-xGaxP/ZnS nanocrystals demonstrate signatures of direct- and indirect-like behavior based on the presence or absence, respectively, of excitonic bleach features. Atomistic electronic structure calculations based on the semi-empirical pseudopotential model are used to calculate absorption spectra and radiative lifetimes and evaluate band-edge degeneracy; the resulting calculated electronic properties are consistent with experimental observations. By studying photoluminescence characteristics at elevated temperatures, we demonstrate that a reduced lattice mismatch at the III-V/II-VI core-shell interface can enhance the thermal stability of emission. These insights establish cation exchange in molten inorganic salts as a viable synthetic route to nontoxic, high-quality In1-xGaxP/ZnS QD emitters with desirable optoelectronic properties.

7.
J Am Chem Soc ; 145(11): 6230-6239, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36892967

RESUMO

The library of imine-linked covalent organic frameworks (COFs) has grown significantly over the last two decades, featuring a variety of morphologies, pore sizes, and applications. An array of synthetic methods has been developed to expand the scope of the COF functionalities; however, most of these methods were designed to introduce functional scaffolds tailored to a specific application. Having a general approach to diversify COFs via late-stage incorporation of functional group handles would greatly facilitate the transformation of these materials into platforms for a variety of useful applications. Herein, we report a general strategy to introduce functional group handles in COFs via the Ugi multicomponent reaction. To demonstrate the versatility of this approach, we have synthesized two COFs with hexagonal and kagome morphologies. We then introduced azide, alkyne, and vinyl functional groups, which could be readily utilized for a variety of post-synthetic modifications. This facile approach enables the functionalization of any COFs containing imine linkages.

8.
J Am Chem Soc ; 145(50): 27459-27470, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059480

RESUMO

Doping, or incremental substitution of one element for another, is an effective way to tailor a compound's structure as well as its physical and chemical properties. Herein, we replaced up to 30% of Ni with Co in members of the family of layered LiNiB compounds, stabilizing the high-temperature polymorph of LiNiB while the room-temperature polymorph does not form. By studying this layered boride with in situ high-temperature powder diffraction, we obtained a distorted variant of LiNi0.7Co0.3B featuring a perfect interlayer placement of [Ni0.7Co0.3B] layers on top of each other─a structural motif not seen before in other borides. Because of the Co doping, LiNi0.7Co0.3B can undergo a nearly complete topochemical Li deintercalation under ambient conditions, resulting in a metastable boride with the formula Li0.04Ni0.7Co0.3B. Heating of Li0.04Ni0.7Co0.3B in anaerobic conditions led to yet another metastable boride, Li0.01Ni0.7Co0.3B, with a CoB-type crystal structure that cannot be obtained by simple annealing of Ni, Co, and B. No significant alterations of magnetic properties were detected upon Co-doping in the temperature-independent paramagnet LiNi0.7Co0.3B or its Li-deintercalated counterparts. Finally, Li0.01Ni0.7Co0.3B stands out as an exceptional catalyst for the selective hydrogenation of the vinyl C═C bond in 3-nitrostyrene, even in the presence of other competing functional groups. This research showcases an innovative approach to heterogeneous catalyst design by meticulously synthesizing metastable compounds.

9.
J Am Chem Soc ; 145(27): 14874-14883, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366803

RESUMO

Low sensitivity is the primary limitation to extending nuclear magnetic resonance (NMR) techniques to more advanced chemical and structural studies. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an NMR hyperpolarization technique where light is used to excite a suitable donor-acceptor system, creating a spin-correlated radical pair whose evolution drives nuclear hyperpolarization. Systems that exhibit photo-CIDNP in solids are not common, and this effect has, up to now, only been observed for 13C and 15N nuclei. However, the low gyromagnetic ratio and natural abundance of these nuclei trap the local hyperpolarization in the vicinity of the chromophore and limit the utility for bulk hyperpolarization. Here, we report the first example of optically enhanced solid-state 1H NMR spectroscopy in the high-field regime. This is achieved via photo-CIDNP of a donor-chromophore-acceptor molecule in a frozen solution at 0.3 T and 85 K, where spontaneous spin diffusion among the abundant strongly coupled 1H nuclei relays polarization through the whole sample, yielding a 16-fold bulk 1H signal enhancement under continuous laser irradiation at 450 nm. These findings enable a new strategy for hyperpolarized NMR beyond the current limits of conventional microwave-driven DNP.

10.
Angew Chem Int Ed Engl ; 62(44): e202308822, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37466460

RESUMO

Combustion is often difficult to spatially direct or tune associated kinetics-hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A 'surface-then-core' order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2 ) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and µm-diameter tubes from appropriately sized fibers.

11.
J Am Chem Soc ; 144(30): 13511-13525, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35861681

RESUMO

Techniques that can characterize the molecular structures of dilute surface species are required to facilitate the rational synthesis and improvement of Pt-based heterogeneous catalysts. 195Pt solid-state NMR spectroscopy could be an ideal tool for this task because 195Pt isotropic chemical shifts and chemical shift anisotropy (CSA) are highly sensitive probes of the local chemical environment and electronic structure. However, the characterization of Pt surface-sites is complicated by the typical low Pt loadings that are between 0.2 and 5 wt% and broadening of 195Pt solid-state NMR spectra by CSA. Here, we introduce a set of solid-state NMR methods that exploit fast MAS and indirect detection using a sensitive spy nucleus (1H or 31P) to enable the rapid acquisition of 195Pt MAS NMR spectra. We demonstrate that high-resolution wideline 195Pt MAS NMR spectra can be acquired in minutes to a few hours for a series of molecular and single-site Pt species grafted on silica with Pt loading of only 3-5 wt%. Low-power, long-duration, sideband-selective excitation, and saturation pulses are incorporated into t1-noise eliminated dipolar heteronuclear multiple quantum coherence, perfect echo resonance echo saturation pulse double resonance, or J-resolved pulse sequences. The complete 195Pt MAS NMR spectrum is then reconstructed by recording a series of 1D NMR spectra where the offset of the 195Pt pulses is varied in increments of the MAS frequency. Analysis of the 195Pt MAS NMR spectra yields the 195Pt chemical shift tensor parameters. Zeroth order approximation density functional theory calculations accurately predict 195Pt CS tensor parameters. Simple and predictive orbital models relate the CS tensor parameters to the Pt electronic structure and coordination environment. The methodology developed here paves the way for the detailed structural and electronic analysis of dilute platinum surface-sites.


Assuntos
Eletrônica , Platina , Anisotropia , Espectroscopia de Ressonância Magnética/métodos
12.
J Am Chem Soc ; 144(41): 18766-18771, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36214757

RESUMO

Boron oxide/hydroxide supported on oxidized activated carbon (B/OAC) was shown to be an inexpensive catalyst for the oxidative dehydrogenation (ODH) of propane that offers activity and selectivity comparable to boron nitride. Here, we obtain an atomistic picture of the boron oxide/hydroxide layer in B/OAC by using 35.2 T 11B and 17O solid-state NMR experiments. NMR spectra measured at 35.2 T resolve the boron and oxygen sites due to narrowing of the central-transition powder patterns. A 35.2 T 2D 11B{17O} dipolar heteronuclear correlation NMR spectrum revealed the structural connectivity between boron and oxygen atoms. The approach outlined here should be generally applicable to determine atomistic structures of heterogeneous catalysts containing quadrupolar nuclei.


Assuntos
Boro , Propano , Boro/química , Propano/química , Pós , Carvão Vegetal , Espectroscopia de Ressonância Magnética/métodos , Oxigênio , Hidróxidos , Estresse Oxidativo
13.
J Am Chem Soc ; 144(47): 21530-21543, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383737

RESUMO

N-Heterocyclic carbenes (NHCs) are widely used ligands in transition metal catalysis. Notably, they are increasingly encountered in heterogeneous systems. While a detailed knowledge of the possibly multiple metal environments would be essential to understand the activity of metal-NHC-based heterogeneous catalysts, only a few techniques currently have the ability to describe with atomic-resolution structures dispersed on a solid support. Here, we introduce a new dynamic nuclear polarization (DNP) surface-enhanced solid-state nuclear magnetic resonance (NMR) approach that, in combination with advanced density functional theory (DFT) calculations, allows the structure characterization of isolated silica-supported Pt-NHC sites. Notably, we demonstrate that the signal amplification provided by DNP in combination with fast magic angle spinning enables the implementation of sensitive 13C-195Pt correlation experiments. By exploiting 1J(13C-195Pt) couplings, 2D NMR spectra were acquired, revealing two types of Pt sites. For each of them, 1J(13C-195Pt) value was determined as well as 195Pt chemical shift tensor parameters. To interpret the NMR data, DFT calculations were performed on an extensive library of molecular Pt-NHC complexes. While one surface site was identified as a bis-NHC compound, the second site most likely contains a bidentate 1,5-cyclooctadiene ligand, pointing to various parallel grafting mechanisms. The methodology described here represents a new step forward in the atomic-level description of catalytically relevant surface metal-NHC complexes. In particular, it opens up innovative avenues for exploiting the spectral signature of platinum, one of the most widely used transition metals in catalysis, but whose use for solid-state NMR remains difficult. Our results also highlight the sensitivity of 195Pt NMR parameters to slight structural changes.


Assuntos
Complexos de Coordenação , Elementos de Transição , Ligantes , Metano/química , Espectroscopia de Ressonância Magnética , Platina/química , Complexos de Coordenação/química
14.
Acc Chem Res ; 54(3): 707-718, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449626

RESUMO

ConspectusSince the initial discovery of colloidal lead halide perovskite nanocrystals, there has been significant interest placed on these semiconductors because of their remarkable optoelectronic properties, including very high photoluminescence quantum yields, narrow size- and composition-tunable emission over a wide color gamut, defect tolerance, and suppressed blinking. These material attributes have made them attractive components for next-generation solar cells, light emitting diodes, low-threshold lasers, single photon emitters, and X-ray scintillators. While a great deal of research has gone into the various applications of colloidal lead halide perovskite nanocrystals, comparatively little work has focused on the fundamental surface chemistry of these materials. While the surface chemistry of colloidal semiconductor nanocrystals is generally affected by their particle morphology, surface stoichiometry, and organic ligands that contribute to the first coordination sphere of their surface atoms, these attributes are markedly different in lead halide perovskite nanocrystals because of their ionicity.In this Account, emerging work on the surface chemistry of lead halide perovskite nanocrystals is highlighted, with a particular focus placed on the most-studied composition of CsPbBr3. We begin with an in-depth exploration of the native surface chemistry of as-prepared, 0-D cuboidal CsPbBr3 nanocrystals, including an atomistic description of their surface termini, vacancies, and ionic bonding with ligands. We then proceed to discuss various post-synthetic surface treatments that have been developed to increase the photoluminescence quantum yields and stability of CsPbBr3 nanocrystals, including the use of tetraalkylammonium bromides, metal bromides, zwitterions, and phosphonic acids, and how these various ligands are known to bind to the nanocrystal surface. To underscore the effect of post-synthetic surface treatments on the application of these materials, we focus on lead halide perovskite nanocrystal-based light emitting diodes, and the positive effect of various surface treatments on external quantum efficiencies. We also discuss the current state-of-the-art in the surface chemistry of 1-D nanowires and 2-D nanoplatelets of CsPbBr3, which are more quantum confined than the corresponding cuboidal nanocrystals but also generally possess a higher defect density because of their increased surface area-to-volume ratios.

15.
Chemistry ; 28(9): e202104319, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34882857

RESUMO

Centrosymmetric skutterudite RhP3 was converted to a nonsymmorphic and chiral compound RhSi0.3 P2.7 (space group P21 21 21 ) by means of partial replacement of Si for P. The structure, determined by a combination of X-ray crystallography and solid state 31 P NMR, exhibits branched polyanionic P/Si chains that are unique among metal phosphides. A driving force to stabilize the locally noncentrosymmetric cis-RhSi2 P4 and fac-RhSi3 P3 fragments is π-electron back-donation between the Rh t2g -type orbitals and the unoccupied antibonding Si/P orbitals, which is more effective for Si than for P. In situ studies and total energy calculations revealed the metastable nature of RhSi0.3 P2.7 . Electronic structure calculations predicted centrosymmetric cubic RhP3 to be metallic which was confirmed by transport properties measurements. In contrast, the electronic structure for chiral orthorhombic RhSi0.3 P2.7 contained a bandgap, and this compound was shown to be a narrow gap semiconductor.

16.
Inorg Chem ; 61(18): 6888-6897, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35481778

RESUMO

Heterobimetallic complexes have attracted much interest due to their broad range of structures and reactivities as well as unique catalytic abilities. Additionally, these complexes can be utilized as single-source precursors for the synthesis of binary intermetallic compounds. An example is the family of bis(pyridine-2-thiolato)dichloro-germanium and tin complexes of group 10 metals (Pd and Pt). The reactivity of these heterobimetallic complexes is highly tunable through substitution of the group 14 element and the neutral ligand bound to the transition metal. Here, we study the binding energies of three different phosphorous-based ligands, PR3 (R = Bu, Ph, and OPh) by density functional theory and restricted Hartree-Fock methods. The PR3 ligand-binding energies follow the trend of PBu3 > PPh3 > P(OPh)3, in agreement with their sigma-bonding ability. These results are confirmed by ligand exchange experiments monitored with 31P NMR spectroscopy, in which a weaker binding PR3 ligand is replaced with a stronger one. Furthermore, we demonstrate that the heterobimetallic complexes are active catalysts in the Negishi coupling reaction, where stronger binding PR3 ligands inhibit access to an active site at the metal center. Similar strategies could be applied to other complexes to better understand their ligand-binding energetics and predict their reactivity as both precursors and catalysts.


Assuntos
Germânio , Fosfinas , Elementos de Transição , Ligantes , Elementos de Transição/química
17.
Inorg Chem ; 61(5): 2640-2651, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35080173

RESUMO

Seven acentric sulfides Ba6(CuxZy)Sn4S16 (Z = Mg, Mn, Zn, Cd, In, Bi, Sn) were grown by a high-temperature salt flux method. The crystal structures of the Ba6(CuxZy)Sn4S16 (Z = Mg, Mn, Zn, Cd, In, Bi, Sn) compounds were determined by single-crystal X-ray diffraction with the aid of solid-state NMR spectroscopy. The Ba6(CuxZy)Sn4S16 (Z = Mg, Mn, Zn, Cd, In, Bi) compounds are isostructural and crystallize in the Ba6Ag4Sn4S16 structure type. The Sn-containing compound exhibits high structural similarity to Ba6(CuxZy)Sn4S16 (Z = Mg, Mn, Zn, Cd, In, Bi) with the presence of an interstitial atomic position partially occupied by Sn atoms. The chemical bonding characteristics of Ba6(Cu2.9Sn0.4)Sn4S16 were understood with electron localization function calculations coupled with crystal orbital Hamilton population calculations. The Ba-S and Cu-S interactions are dominantly ionic, but the Sn-S interactions consist of strong covalent bonding characteristics in Ba6(Cu2.9Sn0.4)Sn4S16. The monovalent Cu atoms, mixed with certain metals with various oxidation states, significantly shift the optical properties of the Ba6(CuxZy)Sn4S16 (Z = Mg, Mn, Zn, Cd, In, Bi) compounds. This results in a good balance between the second-harmonic-generation (SHG) response and laser damage threshold (LDT). Ba6(Cu1.9Zn1.1)Sn4S16 possesses a high SHG response and a high LDT of 2.8 × AGS and 3 × AGS, respectively. A density functional theory calculation revealed that CuS4 and SnS4 tetrahedra significantly contribute to the SHG response in Ba6(Cu2Mg)Sn4S16, which also confirmed that CuS4 tetrahedra are crucial for the stability and optical properties of the Ba6(CuxZy)Sn4S16 (Z = Mg, Mn, Zn, Cd, In, Bi, Sn) compounds revealed by electronic structure analysis.

18.
J Chem Phys ; 156(12): 124112, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35364862

RESUMO

Solid-state nuclear magnetic resonance can be enhanced using unpaired electron spins with a method known as dynamic nuclear polarization (DNP). Fundamentally, DNP involves ensembles of thousands of spins, a scale that is difficult to match computationally. This scale prevents us from gaining a complete understanding of the spin dynamics and applying simulations to design sample formulations. We recently developed an ab initio model capable of calculating DNP enhancements in systems of up to ∼1000 nuclei; however, this scale is insufficient to accurately simulate the dependence of DNP enhancements on radical concentration or magic angle spinning (MAS) frequency. We build on this work by using ab initio simulations to train a hybrid model that makes use of a rate matrix to treat nuclear spin diffusion. We show that this model can reproduce the MAS rate and concentration dependence of DNP enhancements and build-up time constants. We then apply it to predict the DNP enhancements in core-shell metal-organic-framework nanoparticles and reveal new insights into the composition of the particles' shells.

19.
Solid State Nucl Magn Reson ; 119: 101785, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405629

RESUMO

In the past 15 years, magic angle spinning (MAS) dynamic nuclear polarization (DNP) has emerged as a method to increase the sensitivity of high-resolution solid-state NMR spectroscopy experiments. Recently, γ-irradiation has been used to generate significant concentrations of homogeneously distributed free radicals in a variety of solids, including quartz, glucose, and cellulose. Both γ-irradiated quartz and glucose previously showed significant MAS DNP enhancements. Here, γ-irradiation is applied to twelve small organic molecules to test the applicability of γ-irradiation as a general method of creating stable free radicals for MAS DNP experiments on organic solids and pharmaceuticals. Radical concentrations in the range of 0.25 â€‹mM-10 â€‹mM were observed in irradiated glucose, histidine, malic acid, and malonic acid, and significant 1H DNP enhancements of 32, 130, 19, and 11 were obtained, respectively, as measured by 1H→13C CPMAS experiments. However, concentrations of free radicals below 0.05 â€‹mM were generally observed in organic molecules containing aromatic rings, preventing sizeable DNP enhancements. DNP sensitivity gains for several of the irradiated compounds exceed that which can be obtained with the relayed DNP approach that uses exogeneous polarizing agent solutions and impregnation procedures. In several cases, significant 1H DNP enhancements were realized at room temperature. This study demonstrates that in many cases γ-irradiation is a viable alternative to addition of stable exogenous radicals for DNP experiments on organic solids.


Assuntos
Histidina , Quartzo , Radicais Livres , Glucose , Histidina/química , Espectroscopia de Ressonância Magnética/métodos
20.
Angew Chem Int Ed Engl ; 61(40): e202205745, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35951474

RESUMO

Al(OC(CF3 )3 )(PhF) reacts with silanols present on partially dehydroxylated silica to form well-defined ≡SiOAl(OC(CF3 )3 )2 (O(Si≡)2 ) (1). 27 Al NMR and DFT calculations with a small cluster model to approximate the silica surface show that the aluminum in 1 adopts a distorted trigonal bipyramidal coordination geometry by coordinating to a nearby siloxane bridge and a fluorine from the alkoxide. Fluoride ion affinity (FIA) calculations follow experimental trends and show that 1 is a stronger Lewis acid than B(C6 F5 )3 and Al(OC(CF3 )3 )(PhF) but is weaker than Al(OC(CF3 )3 ) and i Pr3 Si+ . Cp2 Zr(CH3 )2 reacts with 1 to form [Cp2 ZrCH3 ][≡SiOAl(OC(CF3 )3 )2 (CH3 )] (3) by methide abstraction. This reactivity pattern is similar to reactions of organometallics with the proposed strong Lewis acid sites present on Al2 O3 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA