Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Langmuir ; 40(5): 2487-2499, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38180486

RESUMO

The solvophobicity-driven directional self-assembly of polymer-coated gold nanorods is a well-established phenomenon. Yet, the kinetics of this process, the origin of site-selectivity in the self-assembly, and the interplay of (attractive) solvophobic brush interactions and (repulsive) electrostatic forces are not fully understood. Herein, we use a combination of time-resolved (vis/NIR) extinction spectroscopy and finite-difference time-domain (FDTD) simulations to determine conversion profiles for the assembly of gold nanorods with polystyrene shells of distinct thicknesses into their (tip-to-tip) self-assembled structures. In particular, we demonstrate that the assembly process is highly protracted compared with diffusion-controlled rates, and we find that the assembly rate varies for different thickness values of the polymer shell. Our findings were rationalized using coarse-grained molecular dynamics simulations, which also corroborated the tip-to-tip preference in the self-assembly process, albeit with a uniform polymer coating. Utilizing the knowledge of quantified conversion rates for distinct colloidal species, we designed coassembling systems with different brush thicknesses, featuring "narcissistic" self-sorting behavior. This provides new perspectives for high-level supracolloidal self-assembly.

2.
Langmuir ; 38(40): 12325-12332, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154138

RESUMO

Gold nanoparticles decorated with analyte recognition units can form the basis of colorimetric (bio)sensors. The presentation of those recognition units may play a critical role in determining sensor sensitivity. Herein, we use a model system to investigate the effect of the architecture of a polymeric linker that connects gold nanoparticles with the recognition units. Our results show that the number of the latter that can be adsorbed during the assembly of the colorimetric sensors depends on the linker topology. We also show that this may lead to substantial differences in colorimetric sensor performance, particularly in situations in which the interactions with the analyte are comparably weak. Finally, we discuss design principles for efficient colorimetric sensor materials based on our findings.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Ouro , Polímeros
3.
Biomacromolecules ; 21(12): 5008-5020, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33076657

RESUMO

The kinetics of forming multifunctional nanostructures, such as nanotheranostic superstructures, is often highly protracted, involving macroscopic time scales and resulting in nanostructures that correspond to kinetically stable states rather than thermodynamic equilibrium. Predicting such kinetically stable nanostructures becomes a great challenge due to the widely different, relevant time scales that are implicated in the formation kinetics of nano-objects. We develop a methodology, integral of first-passage times from constrained simulations (IFS), to predict kinetically stable, planet-satellite nanotheranostic superstructures. The simulation results are consistent with our experimental observations. The developed methodology enables the exploration of time scales from molecular vibrations of 10-3 ns toward macroscopic scales, 1010 ns, which permits the rational design and prediction of kinetically stable nanotheranostic superstructures for applications in nanomedicine.


Assuntos
Nanomedicina , Nanoestruturas , Simulação por Computador , Cinética , Termodinâmica
4.
Angew Chem Int Ed Engl ; 58(27): 9269-9274, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050140

RESUMO

Using two orthogonal external stimuli, programmable staged surface patterning and self-assembly of inorganic nanoparticles (NPs) was achieved. For gold NPs capped with end-grafted poly(styrene-block-(4-vinylbenzoic acid)), P(St-block-4VBA), block copolymer ligands, surface-pinned micelles (patches) formed from NP-adjacent PSt blocks under reduced solvency conditions (Stimulus 1); solvated NP-remote P(4VBA) blocks stabilized the NPs against aggregation. Subsequent self-assembly of patchy NPs was triggered by crosslinking the P(4VBA) blocks with copper(II) ions (Stimulus 2). Block copolymer ligand design has a strong effect on NP self-assembly. Small, well-defined clusters assembled from NPs functionalized with ligands with a short P(4VBA) block, while NPs tethered with ligands with a long P(4VBA) block formed large irregularly shaped assemblies. This approach is promising for high-yield fabrication of colloidal molecules and their assemblies with structural and functional complexity.

5.
Langmuir ; 34(29): 8622-8628, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29958497

RESUMO

Hybrid core-shell type nanoparticles from gold nanoparticle cores and poly( N-isopropylacrylamide) shells were investigated with regard to their structural plasticity. Reversible addition-fragmentation chain transfer polymerization was used to synthesize well-defined polymers that can be readily anchored onto the gold nanoparticle surface. The polymer shell morphologies were directly visualized in their native solution state at high resolution by cryogenic transmission electron microscopy, and the microscopic results were further corroborated by dynamic light scattering. Different environmental conditions and brush architectures are covered by our experiments, which leads to distinct thermally induced responses. These responses include constrained dewetting of the nanoparticle surface at temperatures above the lower critical solution temperature of poly( N-isopropylacrylamide), leading to surface polymer patches. This effect provides a novel approach toward breaking the symmetry of nanoparticle interactions, and we show first evidence for its impact on the formation of colloidal superstructures.

6.
Soft Matter ; 14(22): 4551-4557, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29767175

RESUMO

The preparation of nanoparticles and their targeted connection with other functional units is one key challenge in developing nanoscale devices. Herein, we report an experimental strategy toward the development of anisotropic nanoparticle architectures. Our approach is based on phase separation of binary mixed polymer brushes on gold nanoparticle surfaces leading to Janus-type structures, as revealed by scanning transmission electron microscopy and electron energy-loss spectroscopy and, additionally, corroborated by computer simulation. We show that such structures can be used for the site-selective functionalization with additional nanosized entities.

7.
Langmuir ; 33(8): 2017-2026, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28170264

RESUMO

Planet-satellite nanostructures from RAFT star polymers and larger (planet) as well as smaller (satellite) gold nanoparticles are analyzed in experiments and computer simulations regarding the influence of arm number of star polymers. A uniform scaling behavior of planet-satellite distances as a function of arm length was found both in the dried state (via transmission electron microscopy) after casting the nanostructures on surfaces and in the colloidally dispersed state (via simulations and small-angle X-ray scattering) when 2-, 3-, and 6-arm star polymers were employed. This indicates that the planet-satellite distances are mainly determined by the arm length of star polymers. The observed discrepancy between TEM and simulated distances can be attributed to the difference of polymer configurations in dried and dispersed state. Our results also show that these distances are controlled by the density of star polymers end groups, and the number of grabbed satellite particles is determined by the magnitude of the corresponding density. These findings demonstrate the feasibility to precisely control the planet-satellite structures at the nanoscale.

8.
Macromol Rapid Commun ; 37(21): 1742-1747, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717056

RESUMO

The development of a straightforward method is reported to form hybrid polymer/gold planet-satellite nanostructures (PlSNs) with functional polymer. Polyacrylate type polymer with benzyl chloride in its backbone as a macromolecular tracer is synthesized to study its localization within PlSNs by analyzing the elemental distribution of chlorine. The functionalized nanohybrid structures are analyzed by scanning transmission electron microscopy, electron energy loss spectroscopy, and spectrum imaging. The results show that the RAFT (reversible addition-fragmentation chain transfer) polymers' sulfur containing end groups are colocalized at the gold cores, both within nanohybrids of simple core-shell morphology and within higher order PlSNs, providing microscopic evidence for the affinity of the RAFT group toward gold surfaces.


Assuntos
Ouro/química , Substâncias Macromoleculares/química , Nanoestruturas/química , Polímeros/química , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
9.
Langmuir ; 31(38): 10573-82, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26340689

RESUMO

Gold nanoparticle (AuNP) network structures featuring particles from the two-phase Brust-Schiffrin synthesis and linear RAFT oligomers of styrene with two and multiple trithiocarbonate (TTC) groups along their backbone have been investigated in detail. Insights into the internal structures of these particle networks could be obtained from small-angle X-ray scattering experiments, showing that primary AuNPs are cross-linked by the employed molecular linker. The extent of AuNP network formation was investigated by means of dynamic light scattering and UV/visible extinction spectroscopy, showing an abrupt attenuation of network formation after a critical degree of polymerization of the cross-linker is exceeded. Analysis of transmission electron micrographs indicated a three-dimensional shape of the particle superstructures, which is evenly filled with the primary AuNPs. From the results obtained in this study, guidelines for the fabrication of nanoparticle networks from the self-assembly with macromolecular cross-linkers are suggested.

10.
Angew Chem Int Ed Engl ; 53(46): 12639-42, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25138594

RESUMO

The investigation and application of complex nanostructures requires the hierarchical arrangement of distinct domains on a small scale. Herein, we report a method to prepare planet-satellite arrangements using RAFT polymers. Our approach is based on star polymers decorated with trithiocarbonate groups on their outer periphery that attach to gold surfaces and thus provide the polymer with the ability to connect (larger) gold nanoparticle planets with (smaller) gold nanoparticle satellites. By adjusting the molecular weight of the polymeric linker, nanostructures with tailored planet-satellite distances, as evidenced by transmission electron microscopy, are obtained. This strategy offers a straightforward way to prepare gold nanoparticle scaffolds with multiple reactive functionalities at defined distances from the central core.

11.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177011

RESUMO

Metal nanoparticles are increasingly used as key elements in the fabrication and processing of advanced electronic systems and devices. For future device integration, their charge transport properties are essential. This has been exploited, e.g., in the development of gold-nanoparticle-based conductive inks and chemiresistive sensors. Colloidal wires and metal nanoparticle lines can also be used as interconnection structures to build directional electrical circuits, e.g., for signal transduction. Our scalable bottom-up, template-assisted self-assembly creates gold-nanorod (AuNR) lines that feature comparably small widths, as well as good conductivity. However, the bottom-up approach poses the question about the consistency of charge transport properties between individual lines, as this approach leads to heterogeneities among those lines with regard to AuNR orientation, as well as line defects. Therefore, we test the conductance of the AuNR lines and identify requirements for a reliable performance. We reveal that multiple parallel AuNR lines (>11) are necessary to achieve predictable conductivity properties, defining the level of miniaturization possible in such a setup. With this system, even an active area of only 16 µm2 shows a higher conductance (~10-5 S) than a monolayer of gold nanospheres with dithiolated-conjugated ligands and additionally features the advantage of anisotropic conductance.

12.
Nanoscale ; 15(46): 18687-18695, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37941432

RESUMO

We achieved external activation of local hot-spot sites in supracolloidal assembly structures. The concept was demonstrated by boosting surface-enhanced Raman scattering (SERS) efficiency by one order of magnitude through a heating-induced process. Our approach involves assembling gold nanoparticles with distinct dimensions, i.e. 16 and 80 nm, into well-defined planet-satellite-type arrangement structures using thermoresponsive (poly(N-isopropylacrylamide)) star polymer linkers. Insights into the assembly process were obtained by calculations within the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory framework. We observe one order of magnitude increase in SERS enhancement by a heating-induced volume-phase transition. This magnification aligns with simulations run using the finite-difference time-domain (FDTD) method. The implications of this adaptive supracolloidal concept are twofold: Firstly, our approach bypasses limitations of existing systems that are associated with the limited accessibility of electromagnetic hot-spot sites in strongly coupled, static assemblies of plasmonic nanoparticles, by providing the capability of dynamic hot-spot re-configuration. Second, these externally activated probes offer promising opportunities for the development of messenger materials and associated sensing strategies.

13.
J Am Chem Soc ; 134(30): 12596-603, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22731785

RESUMO

A new methodology has been developed for preparing α-functional polymers in a one-pot simultaneous polymerization/isocyanate "click" reaction. Our original synthetic strategy is based on the preparation of a carbonyl-azide chain transfer agent (CTA) precursor that undergoes the Curtius rearrangement in situ during reversible addition-fragmentation chain transfer (RAFT) polymerization yielding well-controlled α-isocyanate modified polymers. This strategy overcomes numerous difficulties associated with the synthesis of a polymerization mediator bearing an isocyanate at the R group and with the handling of such a reactive functionality. This new carbonyl-azide CTA can control the polymerization of a wide range of monomers, including (meth)acrylates, acrylamides, and styrenes (M(n) = 2-30 kDa; D = 1.16-1.38). We also show that this carbonyl-azide CTA can be used as a universal platform for the synthesis of α-end-functionalized polymers in a one-pot RAFT polymerization/isocyanate "click" procedure.

14.
Adv Mater ; 34(40): e2203366, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35679599

RESUMO

Plasmonic nanoparticles that can be manipulated with magnetic fields are of interest for advanced optical applications, diagnostics, imaging, and therapy. Alignment of gold nanorods yields strong polarization-dependent extinction, and use of magnetic fields is appealing because they act through space and can be quickly switched. In this work, cationic polyethyleneimine-functionalized superparamagnetic Fe3 O4 nanoparticles (NPs) are deposited on the surface of anionic gold nanorods coated with bovine serum albumin. The magnetic gold nanorods (MagGNRs) obtained through mixing maintain the distinct optical properties of plasmonic gold nanorods that are minimally perturbed by the magnetic overcoating. Magnetic alignment of the MagGNRs arising from magnetic dipolar interactions on the anisotropic gold nanorod core is comprehensively characterized, including structural characterization and enhancement (suppression) of the longitudinal surface plasmon resonance and suppression (enhancement) of the transverse surface plasmon resonance for light polarized parallel (orthogonal) to the magnetic field. The MagGNRs can also be driven in rotating magnetic fields to rotate at frequencies of at least 17 Hz. For suitably large gold nanorods (148 nm long) and Fe3 O4 NPs (13.4 nm diameter), significant alignment is possible even in modest (<500 Oe) magnetic fields. An analytical model provides a unified understanding of the magnetic alignment of MagGNRs.


Assuntos
Ouro , Nanotubos , Ouro/química , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Nanotubos/química , Polietilenoimina , Soroalbumina Bovina
15.
ACS Sens ; 7(10): 2951-2959, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36260351

RESUMO

Nanoparticle tracking analysis (NTA) is a widely used methodology to investigate nanoscale systems at the single species level. Here, we introduce the locally structured on-chip optofluidic hollow-core light cage, as a novel platform for waveguide-assisted NTA. This hollow waveguide guides light by the antiresonant effect in a sparse array of dielectric strands and includes a local modification to realize aberration-free tracking of individual nano-objects, defining a novel on-chip solution with properties specifically tailored for NTA. The key features of our system are (i) well-controlled nano-object illumination through the waveguide mode, (ii) diffraction-limited and aberration-free imaging at the observation site, and (iii) a high level of integration, achieved by on-chip interfacing to fibers. The present study covers all aspects relevant for NTA including design, simulation, implementation via 3D nanoprinting, and optical characterization. The capabilities of the approach to precisely characterize practically relevant nanosystems have been demonstrated by measuring the solvency-induced collapse of a nanoparticle system which includes polymer brush-based shells that react to changes in the liquid environment. Our study unlocks the advantages of the light cage approach in the context of NTA, suggesting its application in various areas such as bioanalytics, life science, environmental science, or nanoscale material science in general.


Assuntos
Nanopartículas , Nanotecnologia , Polímeros
16.
J Biol Chem ; 285(14): 10678-89, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20145244

RESUMO

The beta-amyloid precursor protein (APP) represents a type I transmembrane glycoprotein that is ubiquitously expressed. In the brain, it is a key player in the molecular pathogenesis of Alzheimer disease. Its physiological function is however less well understood. Previous studies showed that APP is up-regulated in prostate, colon, pancreatic tumor, and oral squamous cell carcinoma. In this study, we show that APP has an essential role in growth control of pancreatic and colon cancer. Abundant APP staining was found in human pancreatic adenocarcinoma and colon cancer tissue. Interestingly, treating pancreatic and colon cancer cells with valproic acid (VPA, 2-propylpentanoic acid), a known histone deacetylase (HDAC) inhibitor, leads to up-regulation of GRP78, an endoplasmic reticulum chaperone immunoglobulin-binding protein. GRP78 is involved in APP maturation and inhibition of tumor cell growth by down-regulation of APP and secreted soluble APPalpha. Trichostatin A, a pan-HDAC inhibitor, also lowered APP and increased GRP78 levels. In contrast, treating cells with valpromide, a VPA derivative lacking HDAC inhibitory properties, had no effect on APP levels. VPA did not modify the level of epidermal growth factor receptor, another type I transmembrane protein, and APLP2, a member of the APP family, demonstrating the specificity of the VPA effect on APP. Small interfering RNA-mediated knockdown of APP also resulted in significantly decreased cell growth. Based on these observations, the data suggest that APP down-regulation via HDAC inhibition provides a novel mechanism for pancreatic and colon cancer therapy.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Anticonvulsivantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/prevenção & controle , Neoplasias Pancreáticas/prevenção & controle , Receptores de Superfície Celular/metabolismo , Ácido Valproico/farmacologia , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação para Baixo , Chaperona BiP do Retículo Endoplasmático , Inibidores de Histona Desacetilases/farmacologia , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Nexinas de Proteases , RNA Interferente Pequeno/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Células Tumorais Cultivadas
17.
ACS Macro Lett ; 9(3): 422-425, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35648541

RESUMO

End-functional polymers are employed in a wide range of functionalization reactions, including, among others, polymer surface grafting. Herein, kinetic (PREDICI) simulations are used to investigate to what extent the molar mass distribution (MMD) of α-end-functional polymers derived from RAFT polymerization may differ from the MMD of nonfunctional chains and the overall polymeric material. The results indicate that the MMD of the overall polymeric material (as commonly accessed in experiments) may not provide a good estimate for the MMD of α-end-functional chains, if polymerization conditions deviate strongly from pseudoliving conditions. Careful consideration of this behavior is required when using α-end-functional RAFT polymers in quantitative studies.

18.
ACS Nano ; 14(4): 4577-4584, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32176471

RESUMO

Nanoparticles (NPs) decorated with topographically or chemically distinct surface patches are an emerging class of colloidal building blocks of functional hierarchical materials. Surface segregation of polymer ligands into pinned micelles offers a strategy for the generation of patchy NPs with controlled spatial distribution and number of patches. The thermodynamic nature of this approach poses a question about the stability of multiple patches on the NP surface, as the lowest energy state is expected for NPs carrying a single patch. In the present work, for gold NPs end-grafted with thiol-terminated polymer molecules, we show that the patchy surface morphology is preserved under conditions of strong grafting of the thiol groups to the NP surface (i.e., up to a temperature of 40 °C), although the patch shape changes over time. At higher temperatures (e.g., at 80 °C), the number of patches per NP decreases, due to the increased lateral mobility and coalescence of the patches as well as the ultimate loss of the polymer ligands due to desorption at enhanced solvent quality. The experimental results were rationalized theoretically, using a scaling approach. The results of this work offer insight into the surface science of patchy nanocolloids and specify the time and temperature ranges of the applications of patchy NPs.

19.
ACS Macro Lett ; 5(11): 1227-1231, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35614750

RESUMO

The hierarchical self-assembly of distinct nanoelements into precisely ordered nanostructures requires efficient and flexible fabrication strategies. Herein, we report the precise fabrication of bimetallic gold-planet-silver-satellite nanoparticle-arrangements employing RAFT star polymers as particle linker connecting gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) with judiciously modified surface activity. The strengths of this approach include the adjustability of interparticle distances by tailoring the star polymer molar mass. The prepared nanoassemblies have well-defined structures in which a planet AuNP (∼13 nm) is encompassed by several satellite AgNPs (∼8 nm), thus incorporating the properties of both AuNPs and AgNPs, as confirmed by transmission electron microscopy and UV-vis spectra. Our results highlight the general applicability of RAFT star polymers as a nanosynthesis platform for synthesizing noble metal nanocomposites.

20.
ACS Macro Lett ; 2(12): 1073-1076, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35606970

RESUMO

A strategy for the controlled assembly of gold nanocrystals into dispersed three-dimensional superstructures is presented. A multifunctional RAFT agent was used to prepare multiblock polystyrene (4.4-17.8 kDa) with trithiocarbonate groups as junctions between the individual blocks. Addition of these polymers to two-phase Brust-Schiffrin gold nanoparticles (4.1 nm) resulted in the formation of stable gold-nanoparticle assemblies dispersed in toluene. TEM analysis revealed that the interparticle distances in these superstructures can be tuned over an unprecedented wide range by employing multiblock polymers with an adjusted degree of polymerization and thus tailored trithiocarbonate distances. Cross-linking of the gold nanoparticles in the assemblies by multifunctional trithiocarbonates was proven by AFM showing partly preserved globular shape after deposition on a solid substrate. The reported strategy is expected to prove useful when interparticle distances in nanoparticle assemblies need to be tuned in a liquid phase or on surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA