RESUMO
African swine fever virus (ASFV), a large and complex DNA-virus circulating between soft ticks and indigenous suids in sub-Saharan Africa, has made its way into swine populations from Europe to Asia. This virus, causing a severe haemorrhagic disease (African swine fever) with very high lethality rates in wild boar and domestic pigs, has demonstrated a remarkably high genetic stability for over 10 years. Consequently, analyses into virus evolution and molecular epidemiology often struggled to provide the genetic basis to trace outbreaks while few resources have been dedicated to genomic surveillance on whole-genome level. During its recent incursion into Germany in 2020, ASFV has unexpectedly diverged into five clearly distinguishable linages with at least ten different variants characterized by high-impact mutations never identified before. Noticeably, all new variants share a frameshift mutation in the 3' end of the DNA polymerase PolX gene O174L, suggesting a causative role as possible mutator gene. Although epidemiological modelling supported the influence of increased mutation rates, it remains unknown how fast virus evolution might progress under these circumstances. Moreover, a tailored Sanger sequencing approach allowed us, for the first time, to trace variants with genomic epidemiology to regional clusters. In conclusion, our findings suggest that this new factor has the potential to dramatically influence the course of the ASFV pandemic with unknown outcome. Therefore, our work highlights the importance of genomic surveillance of ASFV on whole-genome level, the need for high-quality sequences and calls for a closer monitoring of future phenotypic changes of ASFV.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Sus scrofa , Europa (Continente)/epidemiologia , AlemanhaRESUMO
Since September 2020, Germany has experienced the first ever outbreak of African swine fever (ASF). The first known cases occurred exclusively in wild boar in forest areas in Brandenburg and Saxony; in July 2021, infected domestic pigs were also confirmed for the first time. As wild boar are considered the main reservoir for the virus in the European region, an effective interruption of this infection chain is essential. In particular, the removal and safe disposal of infected carcasses and the direct disinfection of contaminated, unpaved ground are priorities in this regard. For the disinfection, highly potent as well as environmentally compatible disinfectants must be used, which are neither influenced in their effectiveness by the soil condition nor by increased organic contamination. Thus, in this study, slaked lime, milk of lime and quicklime (1% to 10% solutions) were selected for efficacy testing against the test virus recommended by the German Veterinary Society (DVG), Modified Vaccinia Ankara virus (MVAV), and ASF virus (ASFV) in conjunction with six different forest soils from Saxony in two different soil layers (top soil and mineral soil) each. In summary, 10% of any tested lime type is able to inactivate both MVAV and ASFV under conditions of high organic load and independent of the water content of the soil. At least a 4 log reduction of the virus titer in all tested forest soil types and layers and by all applied lime types was observed. In conclusion, the high efficacy and suitability of all tested lime products against both viruses and in the presence of high organic load in forest soil can be confirmed and will help to control ASF spread.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Compostos de Cálcio , Florestas , Óxidos , Solo , Sus scrofa , Suínos , Vaccinia virusRESUMO
The rapid spread of the African swine fever virus (ASFV), causing severe disease with often high fatality rates in Eurasian suids, prevails as a threat for pig populations and dependent industries worldwide. Although advancing scientific progress continually enhances our understanding of ASFV pathogenesis, alternative transmission routes for ASFV have yet to be assessed. Here, we demonstrate that ASFV can efficiently be transferred from infected boars to naïve recipient gilts through artificial insemination (AI). In modern pig production, semen from boar studs often supplies many sow herds. Thus, the infection of a boar stud presents the risk of rapidly and widely distributing ASFV within or between countries. Daily blood and semen collection from four boars after intramuscular inoculation with ASFV strain 'Estonia 2014' resulted in the detection of ASFV genomes in the semen as early as 2 dpi, in blood at 1 dpi while semen quality remained largely unaffected. Ultimately, after insemination with extended semen, 7 of 14 gilts were ASFV positive by 7 days post insemination, and all gilts were ASFV positive by 35 days post insemination. Twelve out of 13 pregnant gilts aborted or resorbed at the onset of fever. A proportion of fetuses originating from the remaining gilt showed both abnormalities and replication of ASFV in fetal tissues. Thus, we present evidence for the efficient transmission of ASFV to gilts via AI and also to implanted embryos. These results underline the critical role that boar semen could play in ASFV transmission.
RESUMO
African swine fever (ASF) is among the most devastating viral diseases of pigs and wild boar worldwide. In recent years, the disease has spread alarmingly. Despite intensive research activities, a commercialized vaccine is still not available, and efficacious live attenuated vaccine candidates raise safety concerns. From a safety perspective, inactivated preparations would be most favourable. However, both historical and more recent trials with chemical inactivation did not show an appreciable protective effect. Under the assumption that the integrity of viral particles could enhance presentation of antigens, we used gamma irradiation for inactivation. To this means, gamma irradiated ASFV "Estonia 2014" was adjuvanted with either Polygen™ or Montanide™ ISA 201 VG, respectively. Subsequently, five weaner pigs per preparation were immunized twice with a three-week interval. Six weeks after the first immunization, all animals were challenged with the highly virulent ASFV strain "Armenia 2008". Although ASFV p72-specific IgG antibodies were detectable in all vaccinated animals prior challenge, no protection could be observed. All animals developed an acute lethal course of ASF and had to be euthanized at a moderate humane endpoint within six days. Indeed, the vaccinated pigs showed even higher clinical scores and a higher inner body temperature than the control group. However, significantly lower viral loads were detectable in spleen and liver of immunized animals at the time point of euthanasia. This phenomenon suggests an immune mediated disease enhancement that needs further investigation.
Assuntos
Febre Suína Africana , Vacinas Virais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana , Animais , Raios gama , Imunogenicidade da Vacina , Suínos , Vacinação , Vacinas Atenuadas/imunologia , Proteínas Virais , Vacinas Virais/imunologiaRESUMO
African swine fever virus (ASFV) causes a hemorrhagic disease in pigs with high socio-economic consequences. To lower the impact of disease incursions, early detection is crucial. In the context of experimental animal trials, we evaluated diagnostic workflows for a high sample throughput in active surveillance, alternative sample matrices for passive surveillance, and lateral flow devices (LFD) for rapid testing. We could demonstrate that EDTA blood is significantly better suited for early ASFV detection than serum. Tissues recommended by the respective diagnostic manuals were in general comparable in their performance, with spleen samples giving best results. Superficial lymph nodes, ear punches, and different blood swabs were also evaluated as potential alternatives. In summary, all matrices yielded positive results at the peak of clinical signs and could be fit for purpose in passive surveillance. However, weaknesses were discovered for some matrices when it comes to the early phase of infection or recovery. The antigen LFD showed variable results with best performance in the clinical phase. The antibody LFD was quite comparable with ELISA systems. Concluding, alternative approaches are feasible but have to be embedded in control strategies selecting test methods and sample materials following a "fit-for-purpose" approach.
RESUMO
African swine fever (ASF) has evolved from an exotic animal disease to a threat to global pig production. An important avenue for the wide-spread transmission of animal diseases is their dissemination through boar semen used for artificial insemination. In this context, we investigated the role of male reproductive organs in the transmission of ASF. Mature domestic boars and adolescent wild boars, inoculated with different ASF virus strains, were investigated by means of virological and pathological methods. Additionally, electron microscopy was employed to investigate in vitro inoculated sperm. The viral genome, antigens and the infectious virus could be found in all gonadal tissues and accessory sex glands. The viral antigen and viral mRNAs were mainly found in mononuclear cells of the respective tissues. However, some other cell types, including Leydig, endothelial and stromal cells, were also found positive. Using RNAScope, p72 mRNA could be found in scattered halo cells of the epididymal duct epithelium, which could point to the disruption of the barrier. No direct infection of spermatozoa was observed by immunohistochemistry, or electron microscopy. Taken together, our results strengthen the assumption that ASFV can be transmitted via boar semen. Future studies are needed to explore the excretion dynamics and transmission efficiency.
Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/transmissão , Febre Suína Africana/virologia , Genitália Masculina/virologia , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Glândulas Bulbouretrais/patologia , Glândulas Bulbouretrais/virologia , DNA Viral/análise , Epididimo/patologia , Epididimo/virologia , Genitália Masculina/patologia , Leucócitos Mononucleares/virologia , Masculino , Próstata/patologia , Próstata/virologia , RNA Mensageiro/análise , RNA Viral/análise , Espermatozoides/ultraestrutura , Espermatozoides/virologia , Sus scrofa , Suínos , Testículo/patologia , Testículo/virologia , Replicação ViralRESUMO
African swine fever (ASF) is one of the most important and devastating viral diseases in wild boar and domestic pigs worldwide. In the absence of vaccines or treatment options, early clinical detection is crucial and requires a sound knowledge of disease characteristics. To provide practitioners and state veterinarians with detailed information, the objective of the present study was to characterize the ASF virus (ASFV) isolate "Belgium 2018/1" in subadult and weaning domestic pigs. To this end, two animal trials were performed. Trial A included eight subadult domestic pigs and trial B five weaner pigs. In general, clinical signs and pathological lesions were in line with previous studies utilizing highly virulent ASF genotype II viruses. However, in trial A, four subadult domestic pigs survived and recovered, pointing to an age-dependent outcome. The long-term fate of these survivors remains under discussion and would need further investigation.