Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(9): 3822-3834, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36135174

RESUMO

Our objective was to investigate how sepsis influences cellular dynamics and amyloid formation before and after plaque formation. As such, APP-mice were subjected to a polymicrobial abdominal infection resulting in sepsis at 2 (EarlySepsis) and 4 (LateSepsis) months of age. Behavior was tested before sepsis and at 5 months of age. We could not detect any short-term memory or exploration behavior alterations in APP-mice that were subjected to Early or LateSepsis. Immunohistochemical analysis revealed a lower area of NeuN+ and Iba1+ signal in the cortex of Late compared with EarlySepsis animals (p = 0.016 and p = 0.01), with an increased astrogliosis in LateSepsis animals compared with WT-Sepsis (p = 0.0028), EarlySepsis (p = 0.0032) and the APP-Sham animals (p = 0.048). LateSepsis animals had larger areas of amyloid compared with both EarlySepsis (p = 0.0018) and APP-Sham animals (p = 0.0024). Regardless of the analyzed markers, we were not able to detect any cellular difference at the hippocampal level between groups. We were able to detect an increased inflammatory response around hippocampal plaques in LateSepsis compared with APP-Sham animals (p = 0.0003) and a decrease of AQP4 signal far from Sma+ vessels. We were able to show experimentally that an acute sepsis event before the onset of plaque formation has a minimal effect; however, it could have a major impact after its onset.

2.
Gels ; 10(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057499

RESUMO

Stroke remains the second leading cause of death and a major cause of disability worldwide, significantly impacting individuals, families, and healthcare systems. This neurological emergency can be triggered by ischemic events, including small vessel arteriolosclerosis, cardioembolism, and large artery atherothromboembolism, as well as hemorrhagic incidents resulting from macrovascular lesions, venous sinus thrombosis, or vascular malformations, leading to significant neuronal damage. The resultant motor impairment, cognitive dysfunction, and emotional disturbances underscore the urgent need for effective therapeutic interventions. Recent advancements in biomaterials, particularly hydrogels, offer promising new avenues for stroke management. Hydrogels, composed of three-dimensional networks of hydrophilic polymers, are notable for their ability to absorb and retain substantial amounts of water. Commonly used polymers in hydrogel formulations include natural polymers like alginate, chitosan, and collagen, as well as synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyacrylamide. Their customizable characteristics-such as their porosity, swelling behavior, mechanical strength, and degradation rates-make hydrogels ideal for biomedical applications, including drug delivery, cell delivery, tissue engineering, and the controlled release of therapeutic agents. This review comprehensively explores hydrogel-based approaches to both ischemic and hemorrhagic stroke therapy, elucidating the mechanisms by which hydrogels provide neuroprotection. It covers their application in drug delivery systems, their role in reducing inflammation and secondary injury, and their potential to support neurogenesis and angiogenesis. It also discusses current advancements in hydrogel technology and the significant challenges in translating these innovations from research into clinical practice. Additionally, it emphasizes the limited number of clinical trials utilizing hydrogel therapies for stroke and addresses the associated limitations and constraints, underscoring the need for further research in this field.

3.
Front Public Health ; 12: 1407302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841666

RESUMO

Carpal Tunnel Syndrome (CTS) has traditionally been viewed as a specialized medical condition. However, its escalating prevalence among professionals across a multitude of industries has sparked substantial interest in recent years. This review aims to delve into CTS as an occupational disease, focusing on its epidemiological patterns, risk factors, symptoms, and management options, particularly emphasizing its relevance in professional environments. The complex interaction of anatomical, biomechanical, and pathophysiological factors that contribute to the development of CTS in different work settings underlines the critical role of ergonomic measures, prompt clinical identification, and tailored treatment plans in reducing its effects. Nevertheless, the challenges presented by existing research, including diverse methodologies and definitions, highlight the need for more unified protocols to thoroughly understand and tackle this issue. There's a pressing demand for more in-depth research into the epidemiology of CTS, its injury mechanisms, and the potential role of targeted medicine. Moreover, recognizing CTS's wider ramifications beyond personal health is essential. The economic burden associated with CTS-related healthcare costs, productivity losses, and compensation claims can significantly impact both businesses and the broader society. Therefore, initiatives aimed at preventing CTS through workplace interventions, education, and early intervention programs not only benefit the affected individuals but also contribute to the overall well-being of the workforce and economic productivity. By fostering a collaborative approach among healthcare professionals, employers, policymakers, and other stakeholders, we can strive towards creating safer and healthier work environments while effectively managing the challenges posed by CTS in occupational settings.


Assuntos
Síndrome do Túnel Carpal , Doenças Profissionais , Síndrome do Túnel Carpal/diagnóstico , Humanos , Fatores de Risco , Ergonomia , Prevalência
4.
Life (Basel) ; 13(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36836924

RESUMO

Stroke remains one of the most important causes of death and disability. Preclinical research is a powerful tool for understanding the molecular and cellular response to stroke. However, a lack of standardization in animal evaluation does not always ensure reproducible results. In the present study, we wanted to identify the best strategy for evaluating animal behavior post-experimental stroke. As such, a meta-analysis was made, evaluating behavioral tests done on male C57BL/6 mice subjected to stroke or sham surgery. Overall, fifty-six studies were included. Our results suggest that different types of tests should be used depending on the post-stroke period one needs to analyze. In the hyper-acute, post-stroke period, the best quantifier will be animal examination scoring, as it is a fast and inexpensive way to identify differences between groups. When evaluating stoke mice in the acute phase, a mix of animal examination and motor tests that focus on movement asymmetry (foot-fault and cylinder testing) seem to have the best chance of picking up differences between groups. Complex tasks (the rotarod test and Morris water maze) should be used within the chronic phase to evaluate differences between the late-subacute and chronic phases.

5.
Curr Health Sci J ; 47(2): 164-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765233

RESUMO

Sepsis remains a major medical emergency that describes the body's systemic immune response to an infectious process and can lead to end-stage organ dysfunction and death. Clinical studies have introduced the concept of sepsis associated encephalopathy, which seems to have a plethora of cellular and molecular triggers starting from systemic inflammatory cytokines, blood-brain barrier (BBB) rupture, microscopic brain injury, altered cerebral circulation, neurotransmission, or even metabolic dysfunction. The purpose of our study is to reproduce the sepsis model previously described using the cecal ligature and puncture (CLP), and to take a closer look to the acute modifications that occur on cellular level when it comes to the brain-blood-barrier of the mice with systemic inflammation. After a rapid systemic response to peritonitis, we show a heterogeneity in astrocytic response within different cortical structures; hippocampus having the longest change in the number of GFAP+cells, while no difference was seen in the number of cortical astrocytes. With even more increasing roles of astrocytes in different pathologies, the relation between sepsis and astrocytes could prove a valuable in discovering new therapy in sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA