Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Pharmacol Exp Ther ; 382(3): 287-298, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688476

RESUMO

Urocortin-1 (UCN1) is a member of the corticotropin releasing hormone (CRH) family of peptides that acts through CRH-receptor 1 (CRHR1) and CRH-receptor 2 (CRHR2). UCN1 can induce the adrenocorticotropin hormone and downstream glucocorticoids through CRHR1 and promote beneficial metabolic effects through CRHR2. UCN1 has a short half-life and has been shown to improve experimental autoimmune disease. A pegylated UCN1 peptide (PEG-hUCN1) was generated to extend half-life and was tested in multiple experimental autoimmune disease models and in healthy mice to determine effects on corticosterone induction, autoimmune disease, and glucocorticoid induced adverse effects. Cardiovascular effects were also assessed by telemetry. PEG-hUCN1 demonstrated a dose dependent 4-6-fold elevation of serum corticosterone and significantly improved autoimmune disease comparable to prednisolone in several experimental models. In healthy mice, PEG-hUCN1 showed less adverse effects compared with corticosterone treatment. PEG-hUCN1 peptide induced an initial 30% reduction in blood pressure that was followed by a gradual and sustained 30% increase in blood pressure at the highest dose. Additionally, an adeno-associated viral 8 (AAV8) UCN1 was used to assess adverse effects of chronic elevation of UCN1 in wild type and CRHR2 knockout mice. Chronic UCN1 expression by an AAV8 approach in wild type and CRHR2 knockout mice demonstrated an important role of CRHR2 in countering the adverse metabolic effects of elevated corticosterone from UCN1. Our findings demonstrate that PEG-hUCN1 shows profound effects in treating autoimmune disease with an improved safety profile relative to corticosterone and that CRHR2 activity is important in metabolic regulation. SIGNIFICANCE STATEMENT: This study reports the generation and characterization of a pegylated UCN1 peptide and the role of CRHR2 in UCN1-induced metabolic effects. The potency/selectivity, pharmacokinetic properties, pharmacodynamic effects, and efficacy in four autoimmune models and safety profiles are presented. This pegylated UCN1 shows potential for treating autoimmune diseases with reduced adverse effects compared to corticosterone treatment. Continuous exposure to UCN1 through an AAV8 approach demonstrates some glucocorticoid mediated adverse metabolic effects that are exacerbated in the absence of the CRHR2 receptor.


Assuntos
Doenças Autoimunes , Urocortinas , Animais , Doenças Autoimunes/tratamento farmacológico , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Glucocorticoides , Camundongos , Camundongos Knockout , Modelos Teóricos , Polietilenoglicóis/farmacologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/metabolismo , Urocortinas/farmacologia
2.
J Biol Chem ; 290(25): 15812-15824, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25944913

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) has been extensively studied due to its essential role in NAD(+) biosynthesis in cancer cells and the prospect of developing novel therapeutics. To understand how NAMPT regulates cellular metabolism, we have shown that the treatment with FK866, a specific NAMPT inhibitor, leads to attenuation of glycolysis by blocking the glyceraldehyde 3-phosphate dehydrogenase step (Tan, B., Young, D. A., Lu, Z. H., Wang, T., Meier, T. I., Shepard, R. L., Roth, K., Zhai, Y., Huss, K., Kuo, M. S., Gillig, J., Parthasarathy, S., Burkholder, T. P., Smith, M. C., Geeganage, S., and Zhao, G. (2013) Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD(+) biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J. Biol. Chem. 288, 3500-3511). Due to technical limitations, we failed to separate isotopomers of phosphorylated sugars. In this study, we developed an enabling LC-MS methodology. Using this, we confirmed the previous findings and also showed that NAMPT inhibition led to accumulation of fructose 1-phosphate and sedoheptulose 1-phosphate but not glucose 6-phosphate, fructose 6-phosphate, and sedoheptulose 7-phosphate as previously thought. To investigate the metabolic basis of the metabolite formation, we carried out biochemical and cellular studies and established the following. First, glucose-labeling studies indicated that fructose 1-phosphate was derived from dihydroxyacetone phosphate and glyceraldehyde, and sedoheptulose 1-phosphate was derived from dihydroxyacetone phosphate and erythrose via an aldolase reaction. Second, biochemical studies showed that aldolase indeed catalyzed these reactions. Third, glyceraldehyde- and erythrose-labeling studies showed increased incorporation of corresponding labels into fructose 1-phosphate and sedoheptulose 1-phosphate in FK866-treated cells. Fourth, NAMPT inhibition led to increased glyceraldehyde and erythrose levels in the cell. Finally, glucose-labeling studies showed accumulated fructose 1,6-bisphosphate in FK866-treated cells mainly derived from dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Taken together, this study shows that NAMPT inhibition leads to attenuation of glycolysis, resulting in further perturbation of carbohydrate metabolism in cancer cells. The potential clinical implications of these findings are also discussed.


Assuntos
Metabolismo dos Carboidratos , Citocinas/metabolismo , NAD/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Fosfatos Açúcares/metabolismo , Acrilamidas/farmacologia , Citocinas/antagonistas & inibidores , Citocinas/genética , Inibidores Enzimáticos/farmacologia , Humanos , Espectrometria de Massas , NAD/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Piperidinas/farmacologia , Fosfatos Açúcares/genética
3.
J Proteomics ; 302: 105198, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38777089

RESUMO

Understanding microglial states in the aging brain has become crucial, especially with the discovery of numerous Alzheimer's disease (AD) risk and protective variants in genes such as INPP5D and TREM2, which are essential to microglia function in AD. Here we present a thorough examination of microglia-like cells and primary mouse microglia at the proteome and transcriptome levels to illuminate the roles these genes and the proteins they encode play in various cell states. First, we compared the proteome profiles of wildtype and INPP5D (SHIP1) knockout primary microglia. Our findings revealed significant proteome alterations only in the homozygous SHIP1 knockout, revealing its impact on the microglial proteome. Additionally, we compared the proteome and transcriptome profiles of commonly used in vitro microglia BV2 and HMC3 cells with primary mouse microglia. Our results demonstrated a substantial similarity between the proteome of BV2 and mouse primary cells, while notable differences were observed between BV2 and human HMC3. Lastly, we conducted targeted lipidomic analysis to quantify different phosphatidylinositols (PIs) species, which are direct SHIP1 targets, in the HMC3 and BV2 cells. This in-depth omics analysis of both mouse and human microglia enhances our systematic understanding of these microglia models. SIGNIFICANCE: Given the growing urgency of comprehending microglial function in the context of neurodegenerative diseases and the substantial therapeutic implications associated with SHIP1 modulation, we firmly believe that our study, through a rigorous and comprehensive proteomics, transcriptomics and targeted lipidomic analysis of microglia, contributes to the systematic understanding of microglial function in the context of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Microglia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Proteoma , Microglia/metabolismo , Animais , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Camundongos , Proteoma/metabolismo , Proteoma/análise , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Camundongos Knockout , Transcriptoma , Fosfatidilinositóis/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Proteômica/métodos
4.
J Clin Endocrinol Metab ; 107(2): 363-378, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34608929

RESUMO

CONTEXT: Tirzepatide substantially reduced hemoglobin A1c (HbA1c) and body weight in subjects with type 2 diabetes (T2D) compared with the glucagon-like peptide 1 receptor agonist dulaglutide. Improved glycemic control was associated with lower circulating triglycerides and lipoprotein markers and improved markers of beta-cell function and insulin resistance (IR), effects only partially attributable to weight loss. OBJECTIVE: Assess plasma metabolome changes mediated by tirzepatide. DESIGN: Phase 2b trial participants were randomly assigned to receive weekly subcutaneous tirzepatide, dulaglutide, or placebo for 26 weeks. Post hoc exploratory metabolomics and lipidomics analyses were performed. SETTING: Post hoc analysis. PARTICIPANTS: 259 subjects with T2D. INTERVENTION(S): Tirzepatide (1, 5, 10, 15 mg), dulaglutide (1.5 mg), or placebo. MAIN OUTCOME MEASURE(S): Changes in metabolite levels in response to tirzepatide were assessed against baseline levels, dulaglutide, and placebo using multiplicity correction. RESULTS: At 26 weeks, a higher dose tirzepatide modulated a cluster of metabolites and lipids associated with IR, obesity, and future T2D risk. Branched-chain amino acids, direct catabolic products glutamate, 3-hydroxyisobutyrate, branched-chain ketoacids, and indirect byproducts such as 2-hydroxybutyrate decreased compared to baseline and placebo. Changes were significantly larger with tirzepatide compared with dulaglutide and directly proportional to reductions of HbA1c, homeostatic model assessment 2-IR indices, and proinsulin levels. Proportional to metabolite changes, triglycerides and diglycerides were lowered significantly compared to baseline, dulaglutide, and placebo, with a bias toward shorter and highly saturated species. CONCLUSIONS: Tirzepatide reduces body weight and improves glycemic control and uniquely modulates metabolites associated with T2D risk and metabolic dysregulation in a direction consistent with improved metabolic health.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/administração & dosagem , Hipoglicemiantes/administração & dosagem , Adulto , Idoso , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Polipeptídeo Inibidor Gástrico/efeitos adversos , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peptídeos Semelhantes ao Glucagon/administração & dosagem , Peptídeos Semelhantes ao Glucagon/efeitos adversos , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/efeitos adversos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/efeitos adversos , Injeções Subcutâneas , Masculino , Metabolômica , Pessoa de Meia-Idade , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/efeitos adversos , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Redução de Peso/efeitos dos fármacos , Adulto Jovem
5.
Obesity (Silver Spring) ; 29(3): 550-561, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33624435

RESUMO

OBJECTIVE: Sex differences in insulin sensitivity are present throughout the life-span, with men having a higher prevalence of insulin resistance and diabetes compared with women. Differences in lean mass, fat mass, and fat distribution-particularly ectopic fat-have all been postulated to contribute to the sexual dimorphism in diabetes risk. Emerging data suggest ectopic lipid composition and subcellular localization are most relevant; however, it is not known whether they explain sex differences in obesity-induced insulin resistance. METHODS: To address this gap, this study evaluated insulin sensitivity and subcellular localization of intramuscular triacylglycerol, diacylglycerol, and sphingolipids as well as muscle acylcarnitines and serum lipidomics in people with obesity. RESULTS: Insulin sensitivity was significantly lower in men (P < 0.05); however, no sex differences were found in localization of intramuscular triacylglycerol, diacylglycerol, or sphingolipids in skeletal muscle. In contrast, men had higher total muscle acylcarnitine (P < 0.05) and long-chain muscle acylcarnitine (P < 0.05), which were related to lower insulin sensitivity (r = -0.42, P < 0.05). Men also displayed higher serum ceramide (P = 0.05) and lysophosphatidylcholine (P < 0.01). CONCLUSIONS: These data reveal novel sex-specific associations between lipid species involved in the coupling of mitochondrial fatty acid transport, ß-oxidation, and tricarboxylic acid cycle flux that may provide therapeutic targets to improve insulin sensitivity.


Assuntos
Carnitina/análogos & derivados , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Adulto , Carnitina/análise , Carnitina/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Estudos de Coortes , Feminino , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Metabolismo dos Lipídeos/fisiologia , Masculino , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/ultraestrutura , Obesidade/etiologia , Obesidade/metabolismo , Oxirredução , Caracteres Sexuais , Esfingolipídeos/metabolismo , Frações Subcelulares/química , Frações Subcelulares/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-32361631

RESUMO

Accumulation of Immune Responsive Gene 1(IRG1) in macrophage induced by lipopolysaccharide (LPS) and interferon gamma (IFN-γ) leads to production of itaconate by decarboxylation of cis-aconitate. The biology associated with IRG1 and itaconate is not fully understood. A rapid and sensitive method for measurement of itaconate will benefit the study of IRG1 biology. Multiple HPLC and derivatization methods were tested. An ion pairing LC-MS/MS method using tributylamine/formic acid as ion pairing agents and a HypercarbTM guard column we proposed demonstrated better peak shape and better sensitivity for itaconate. The current protocol allows baseline separation of itaconate, citraconate, and cis-aconitate without derivatization and direct analysis of analytes in 80% methanol/water solution to avoid the dry-down step. It provides the limit of quantitation (LOQ) of 30 pg itaconate on column with a 4.5-minute run time. This method is validated for measurement of itaconate and cis-aconitate in RAW264.7 cell extract and cell media in a 96-well plate format. We applied this method to successfully measure the increase of itaconate and the decrease of cis-aconitate in RAW cell extract and cell media after LPS/IFN-γ treatment.


Assuntos
Ácido Aconítico/análise , Extratos Celulares/análise , Succinatos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Técnicas Biossensoriais , Butilaminas/química , Cromatografia Líquida de Alta Pressão , Formiatos/química , Hidroxilaminas/química , Interferon gama/química , Limite de Detecção , Lipopolissacarídeos/química , Macrófagos/química , Camundongos , Células RAW 264.7 , Sensibilidade e Especificidade
7.
Clin Cancer Res ; 25(23): 7175-7188, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31409612

RESUMO

PURPOSE: Combination strategies leveraging chemotherapeutic agents and immunotherapy have held the promise as a method to improve benefit for patients with cancer. However, most chemotherapies have detrimental effects on immune homeostasis and differ in their ability to induce immunogenic cell death (ICD). The approval of pemetrexed and carboplatin with anti-PD-1 (pembrolizumab) for treatment of non-small cell lung cancer represents the first approved chemotherapy and immunotherapy combination. Although the clinical data suggest a positive interaction between pemetrexed-based chemotherapy and immunotherapy, the underlying mechanism remains unknown. EXPERIMENTAL DESIGN: Mouse tumor models (MC38, Colon26) and high-content biomarker studies (flow cytometry, Quantigene Plex, and nCounter gene expression analysis) were deployed to obtain insights into the mechanistic rationale behind the efficacy observed with pemetrexed/anti-PD-L1 combination. ICD in tumor cell lines was assessed by calreticulin and HMGB-1 immunoassays, and metabolic function of primary T cells was evaluated by Seahorse analysis. RESULTS: Pemetrexed treatment alone increased T-cell activation in mouse tumors in vivo, robustly induced ICD in mouse tumor cells and exerted T-cell-intrinsic effects exemplified by augmented mitochondrial function and enhanced T-cell activation in vitro. Increased antitumor efficacy and pronounced inflamed/immune activation were observed when pemetrexed was combined with anti-PD-L1. CONCLUSIONS: Pemetrexed augments systemic intratumor immune responses through tumor intrinsic mechanisms including immunogenic cell death, T-cell-intrinsic mechanisms enhancing mitochondrial biogenesis leading to increased T-cell infiltration/activation along with modulation of innate immune pathways, which are significantly enhanced in combination with PD-1 pathway blockade.See related commentary by Buque et al., p. 6890.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Ácido Fólico/metabolismo , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Mitocôndrias/imunologia , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Antígeno B7-H1/imunologia , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Consumo de Oxigênio , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Rep ; 8(1): 15458, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337562

RESUMO

AICARFT is a folate dependent catalytic site within the ATIC gene, part of the purine biosynthetic pathway, a pathway frequently upregulated in cancers. LSN3213128 is a potent (16 nM) anti-folate inhibitor of AICARFT and selective relative to TS, SHMT1, MTHFD1, MTHFD2 and MTHFD2L. Increases in ZMP, accompanied by activation of AMPK and cell growth inhibition, were observed with treatment of LY3213128. These effects on ZMP and proliferation were dependent on folate levels. In human breast MDA-MB-231met2 and lung NCI-H460 cell lines, growth inhibition was rescued by hypoxanthine, but not in the A9 murine cell line which is deficient in purine salvage. In athymic nude mice, LSN3213128 robustly elevates ZMP in MDA-MB-231met2, NCI-H460 and A9 tumors in a time and dose dependent manner. Significant tumor growth inhibition in human breast MDA-MB231met2 and lung NCI-H460 xenografts and in the syngeneic A9 tumor model were observed with oral administration of LSN3213128. Strikingly, AMPK appeared activated within the tumors and did not change even at high levels of intratumoral ZMP after weeks of dosing. These results support the evaluation of LSN3213128 as an antineoplastic agent.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Antineoplásicos , Inibidores Enzimáticos/farmacologia , Hidroximetil e Formil Transferases/antagonistas & inibidores , Neoplasias Pulmonares , Complexos Multienzimáticos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Nucleotídeo Desaminases/antagonistas & inibidores , Ribonucleotídeos , Aminoimidazol Carboxamida/farmacocinética , Aminoimidazol Carboxamida/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Hidroximetil e Formil Transferases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Complexos Multienzimáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Nucleotídeo Desaminases/metabolismo , Ribonucleotídeos/farmacocinética , Ribonucleotídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Med Chem ; 60(23): 9599-9616, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29072452

RESUMO

A hallmark of cancer is unbridled proliferation that can result in increased demand for de novo synthesis of purine and pyrimidine bases required for DNA and RNA biosynthesis. These synthetic pathways are frequently upregulated in cancer and involve various folate-dependent enzymes. Antifolates have a proven record as clinically used oncolytic agents. Our recent research efforts have produced LSN 3213128 (compound 28a), a novel, selective, nonclassical, orally bioavailable antifolate with potent and specific inhibitory activity for aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT), an enzyme in the purine biosynthetic pathway. Inhibition of AICARFT with compound 28a results in dramatic elevation of 5-aminoimidazole 4-carboxamide ribonucleotide (ZMP) and growth inhibition in NCI-H460 and MDA-MB-231met2 cancer cell lines. Treatment with this inhibitor in a murine based xenograft model of triple negative breast cancer (TNBC) resulted in tumor growth inhibition.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/uso terapêutico , Fosforribosilaminoimidazolcarboxamida Formiltransferase/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Feminino , Antagonistas do Ácido Fólico/farmacocinética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Masculino , Camundongos , Camundongos Nus , Modelos Moleculares , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Tiofenos/química , Tiofenos/farmacocinética , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA