Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313558

RESUMO

Transposon (IS200/IS605)-encoded TnpB proteins are predecessors of class 2 type V CRISPR effectors and have emerged as one of the most compact genome editors identified thus far. Here, we optimized the design of Deinococcus radiodurans (ISDra2) TnpB for application in mammalian cells (TnpBmax), leading to an average 4.4-fold improvement in editing. In addition, we developed variants mutated at position K76 that recognize alternative target-adjacent motifs (TAMs), expanding the targeting range of ISDra2 TnpB. We further generated an extensive dataset on TnpBmax editing efficiencies at 10,211 target sites. This enabled us to delineate rules for on-target and off-target editing and to devise a deep learning model, termed TnpB editing efficiency predictor (TEEP; https://www.tnpb.app ), capable of predicting ISDra2 TnpB guiding RNA (ωRNA) activity with high performance (r > 0.8). Employing TEEP, we achieved editing efficiencies up to 75.3% in the murine liver and 65.9% in the murine brain after adeno-associated virus (AAV) vector delivery of TnpBmax. Overall, the set of tools presented in this study facilitates the application of TnpB as an ultracompact programmable endonuclease in research and therapeutics.

2.
Nat Chem Biol ; 20(3): 333-343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37735239

RESUMO

CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Mutação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Genoma
3.
J Inherit Metab Dis ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449255

RESUMO

For gene therapy of the liver, in vivo applications based on adeno-associated virus are the most advanced vectors despite limitations, including low efficacy and episomal loss, potential integration and safety issues, and high production costs. Alternative vectors and/or delivery routes are of high interest. The regenerative ability of the liver bears the potential for ex vivo therapy using liver cell transplantation for disease correction if provided with a selective advantage to expand and replace the existing cell mass. Here we present such treatment of a mouse model of human phenylketonuria (PKU). Primary hepatocytes from wild-type mice were gene modified in vitro (with a lentiviral vector) that carries a gene editing system (CRISPR) to inhibit Cypor. Cypor inactivation confers paracetamol (or acetaminophen) resistance to hepatocytes and thus a growth advantage to eliminate the pre-existing liver cells upon grafting (via the spleen) and exposure to repeated treatment with paracetamol. Grafting Cypor-inactivated wild-type hepatocytes into inbred young adult enu2 (PKU) mice, followed by selective expansion by paracetamol dosing, resulted in replacing up to 5% of cell mass, normalization of blood phenylalanine, and permanent correction of PKU. Hepatocyte transplantation offers thus an armamentarium of novel therapy options for genetic liver defects.

4.
Nat Commun ; 15(1): 2092, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453904

RESUMO

Prime editing is a highly versatile genome editing technology that enables the introduction of base substitutions, insertions, and deletions. However, compared to traditional Cas9 nucleases prime editors (PEs) are less active. In this study we use OrthoRep, a yeast-based platform for directed protein evolution, to enhance the editing efficiency of PEs. After several rounds of evolution with increased selection pressure, we identify multiple mutations that have a positive effect on PE activity in yeast cells and in biochemical assays. Combining the two most effective mutations - the A259D amino acid substitution in nCas9 and the K445T substitution in M-MLV RT - results in the variant PE_Y18. Delivery of PE_Y18, encoded on DNA, mRNA or as a ribonucleoprotein complex into mammalian cell lines increases editing rates up to 3.5-fold compared to PEmax. In addition, PE_Y18 supports higher prime editing rates when delivered in vivo into the liver or brain. Our study demonstrates proof-of-concept for the application of OrthoRep to optimize genome editing tools in eukaryotic cells.


Assuntos
Bioensaio , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Encéfalo , Linhagem Celular , Sistemas CRISPR-Cas/genética , Mamíferos
5.
Nat Commun ; 13(1): 1804, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379808

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is an inherently immune cell deprived tumor, characterized by desmoplastic stroma and suppressive immune cells. Here we systematically dissect PDA intrinsic mechanisms of immune evasion by in vitro and in vivo CRISPR screening, and identify Vps4b and Rnf31 as essential factors required for escaping CD8+ T cell killing. For Vps4b we find that inactivation impairs autophagy, resulting in increased accumulation of CD8+ T cell-derived granzyme B and subsequent tumor cell lysis. For Rnf31 we demonstrate that it protects tumor cells from TNF-mediated caspase 8 cleavage and subsequent apoptosis induction, a mechanism that is conserved in human PDA organoids. Orthotopic transplantation of Vps4b- or Rnf31 deficient pancreatic tumors into immune competent mice, moreover, reveals increased CD8+ T cell infiltration and effector function, and markedly reduced tumor growth. Our work uncovers vulnerabilities in PDA that might be exploited to render these tumors more susceptible to the immune system.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , ATPases Associadas a Diversas Atividades Celulares , Animais , Linfócitos T CD8-Positivos , Carcinoma Ductal Pancreático/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Camundongos , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Ubiquitina-Proteína Ligases
6.
Mol Ther Methods Clin Dev ; 25: 17-25, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35317047

RESUMO

Vanishing white matter (VWM) is a leukodystrophy caused by recessive variants in subunits of eIF2B. At present, no curative treatment is available and patients often die at young age. Due to its monogenic nature, VWM is a promising candidate for the development of CRISPR/Cas9-mediated gene therapy. Here we tested a dual-AAV approach in VWM mice encoding CRISPR/Cas9 and a DNA donor template to correct a pathogenic variant in Eif2b5. We performed sequencing analysis to assess gene correction rates and examined effects on the VWM phenotype, including motor behavior. Sequence analysis demonstrated that over 90% of CRISPR/Cas9-induced edits at the targeted locus are insertion or deletion (indel) mutations, rather than precise corrections from the DNA donor template by homology-directed repair. Around half of the CRISPR/Cas9-treated animals died prematurely. VWM mice showed no improvement in motor skills, weight, or neurological scores at 7 months of age, and CRISPR/Cas9-treated controls displayed an induced VWM phenotype. In conclusion, CRISPR/Cas9-induced DNA double-strand breaks (DSBs) at the Eif2b5 locus did not lead to sufficient correction of the VWM variant. Moreover, indel formation in Eif2b5 induced an exacerbated VWM phenotype. Therefore, DSB-independent strategies like base- or prime editing might better suited for VWM correction.

7.
Sci Transl Med ; 14(636): eabl9238, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294257

RESUMO

Prime editing is a highly versatile CRISPR-based genome editing technology that works without DNA double-strand break formation. Despite rapid technological advances, in vivo application for the treatment of genetic diseases remains challenging. Here, we developed a size-reduced SpCas9 prime editor (PE) lacking the RNaseH domain (PE2ΔRnH) and an intein-split construct (PE2 p.1153) for adeno-associated virus-mediated delivery into the liver. Editing efficiencies reached 15% at the Dnmt1 locus and were further elevated to 58% by delivering unsplit PE2ΔRnH via human adenoviral vector 5 (AdV). To provide proof of concept for correcting a genetic liver disease, we used the AdV approach for repairing the disease-causing Pahenu2 mutation in a mouse model of phenylketonuria (PKU) via prime editing. Average correction efficiencies of 11.1% (up to 17.4%) in neonates led to therapeutic reduction of blood phenylalanine, without inducing detectable off-target mutations or prolonged liver inflammation. Although the current in vivo prime editing approach for PKU has limitations for clinical application due to the requirement of high vector doses (7 × 1014 vg/kg) and the induction of immune responses to the vector and the PE, further development of the technology may lead to curative therapies for PKU and other genetic liver diseases.


Assuntos
Hepatopatias , Fenilcetonúrias , Animais , Dependovirus/genética , Dependovirus/metabolismo , Edição de Genes , Hepatopatias/genética , Hepatopatias/terapia , Camundongos , Fenilcetonúrias/genética , Fenilcetonúrias/terapia
8.
Mol Ther Nucleic Acids ; 26: 502-510, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34631280

RESUMO

Base editors are RNA-guided deaminases that enable site-specific nucleotide transitions. The targeting scope of these Cas-deaminase fusion proteins critically depends on the availability of a protospacer adjacent motif (PAM) at the target locus and is limited to a window within the CRISPR-Cas R-loop, where single-stranded DNA (ssDNA) is accessible to the deaminase. Here, we reason that the Cas9-HNH nuclease domain sterically constrains ssDNA accessibility and demonstrate that omission of this domain expands the editing window. By exchanging the HNH nuclease domain with a monomeric or heterodimeric adenosine deaminase, we furthermore engineer adenine base editor variants (HNHx-ABEs) with PAM-proximally shifted editing windows. This work expands the targeting scope of base editors and provides base editor variants that are substantially smaller. It moreover informs of potential future directions in Cas9 protein engineering, where the HNH domain could be replaced by other enzymes that act on ssDNA.

9.
Nat Biomed Eng ; 5(2): 179-189, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495639

RESUMO

Base editors are RNA-programmable deaminases that enable precise single-base conversions in genomic DNA. However, off-target activity is a concern in the potential use of base editors to treat genetic diseases. Here, we report unbiased analyses of transcriptome-wide and genome-wide off-target modifications effected by cytidine base editors in the liver of mice with phenylketonuria. The intravenous delivery of intein-split cytidine base editors by dual adeno-associated viruses led to the repair of the disease-causing mutation without generating off-target mutations in the RNA and DNA of the hepatocytes. Moreover, the transient expression of a cytidine base editor mRNA and a relevant single-guide RNA intravenously delivered by lipid nanoparticles led to ~21% on-target editing and to the reversal of the disease phenotype; there were also no detectable transcriptome-wide and genome-wide off-target edits. Our findings support the feasibility of therapeutic cytidine base editing to treat genetic liver diseases.


Assuntos
Citidina/genética , DNA/genética , Edição de Genes/métodos , Hepatócitos/metabolismo , RNA/genética , Adenoviridae/fisiologia , Animais , Vetores Genéticos/fisiologia , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL
10.
Nat Biotechnol ; 39(8): 949-957, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34012094

RESUMO

Most known pathogenic point mutations in humans are C•G to T•A substitutions, which can be directly repaired by adenine base editors (ABEs). In this study, we investigated the efficacy and safety of ABEs in the livers of mice and cynomolgus macaques for the reduction of blood low-density lipoprotein (LDL) levels. Lipid nanoparticle-based delivery of mRNA encoding an ABE and a single-guide RNA targeting PCSK9, a negative regulator of LDL, induced up to 67% editing (on average, 61%) in mice and up to 34% editing (on average, 26%) in macaques. Plasma PCSK9 and LDL levels were stably reduced by 95% and 58% in mice and by 32% and 14% in macaques, respectively. ABE mRNA was cleared rapidly, and no off-target mutations in genomic DNA were found. Re-dosing in macaques did not increase editing, possibly owing to the detected humoral immune response to ABE upon treatment. These findings support further investigation of ABEs to treat patients with monogenic liver diseases.


Assuntos
Adenina , LDL-Colesterol , Edição de Genes/métodos , Pró-Proteína Convertase 9/genética , Animais , LDL-Colesterol/sangue , LDL-Colesterol/genética , Fígado/metabolismo , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA