Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(7): 233, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849572

RESUMO

Dyes, considered as toxic and persistent pollutants, must be removed from organic wastes prior to their composting and application in sustainable agriculture. Azo dyes, capable of altering the physicochemical properties of soil, are difficult to expel by conventional wastewater treatments. C.I. Acid Black 1 (AB 1), a sulfonated azo dye, inhibits nitrification and ammonification in the soil, lessens the nitrogen use efficacy in crop production and passes substantially unaltered through an activated sludge process. The retention of C.I. Acid Black 1 by raw and expanded perlite was investigated in order to examine the potential effectiveness of this aluminosilicate material toward organic waste cleanup. Dye adsorption proved spontaneous and endothermic in nature, increasing with temperature for both perlites. Expanded perlite having a more open structure exhibited a better performance compared to the raw material. Several of the most widely recognized two-parameter theoretical models, i.e., Langmuir, Freundlich, Temkin, Brunauer-Emmett-Teller (BET), Harkins-Jura, Halsey, Henderson, and Smith, were applied to reveal physicochemical features characterizing the adsorption. The Langmuir, Freundlich, Temkin, BET, Henderson, and Smith equations best fitted experimental data indicating that the adsorption of anionic dye on perlites is controlled by their surface, i.e., non-uniformity in structure and charge. This heterogeneity of surface is considered responsible for promoting specific dye adsorption areas creating dye "islands" with local dye supersaturations.


Assuntos
Óxido de Alumínio , Corantes , Dióxido de Silício , Óxido de Alumínio/química , Adsorção , Dióxido de Silício/química , Corantes/química , Naftalenossulfonatos/química , Gerenciamento de Resíduos/métodos , Compostos Azo/química , Antraquinonas
2.
J Environ Manage ; 203(Pt 2): 670-678, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27495009

RESUMO

In the present work, a new simple and quick eco-friendly method is discussed to handle effectively the green wastes and produce a sustainable peat substitute of high quality on the large scale. Principal physicochemical parameters, i.e., temperature, moisture, specific weight, pH, electrical conductivity and, also, microorganisms, organic matter, humic substances, total Kjeldahl nitrogen and total organic carbon, C/N ratio, ash, metal content and phytotoxicity, were monitored systematically. Humic substances content values were interrelated to both C/N ratio and pH values and, similarly, bulk density, TOC, TKN, C/N, GI, ash and organic matter were found interconnected to each other. A novel biocatalyst, extremely rich in soil microorganisms, prepared from compost extracts and peaty lignite, accelerated the biotransformation. Zeolite was also employed. The compost does not demonstrate any phytotoxicity throughout the entire biotransformation process and has increased humic substances content. Both humic substances content and germination index can be employed as maturation indices of the compost. Addition of compost, processed for 60 days only, in cultivations of grass plants led to a significant increase in the stem mass and root size, annotating the significant contribution of the compost to both growth and germination. The product obtained is comparable to peat humus, useful as peat substitute and can be classified as a first class soil conditioner suitable for organic farming.


Assuntos
Substâncias Húmicas , Solo , Carbono , Nitrogênio , Temperatura
3.
Plants (Basel) ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836147

RESUMO

As a result of the climate changes that are getting worse nowadays, drought stress (DS) is a major obstacle during crop life stages, which ultimately reduces tomato crop yields. So, there is a need to adopt modern approaches like a novel nutrient- and antioxidant-based formulation (NABF) for boosting tomato crop productivity. NABF consists of antioxidants (i.e., citric acid, salicylic acid, ascorbic acid, glutathione, and EDTA) and nutrients making it a fruitful growth stimulator against environmental stressors. As a first report, this study was scheduled to investigate the foliar application of NABF on growth and production traits, physio-biochemical attributes, water use efficiency (WUE), and nutritional, hormonal, and antioxidative status of tomato plants cultivated under full watering (100% of ETc) and DS (80 or 60% of ETc). Stressed tomato plants treated with NABF had higher DS tolerance through improved traits of photosynthetic efficiency, leaf integrity, various nutrients (i.e., copper, zinc, manganese, calcium, potassium, phosphorus, and nitrogen), and hormonal contents. These positives were a result of lower levels of oxidative stress biomarkers as a result of enhanced osmoprotectants (soluble sugars, proline, and soluble protein), and non-enzymatic and enzymatic antioxidant activities. Growth, yield, and fruit quality traits, as well as WUE, were improved. Full watering with application of 2.5 g NABF L-1 collected 121 t tomato fruits per hectare as the best treatment. Under moderate DS (80% of ETc), NABF application increased fruit yield by 10.3%, while, under severe DS (40% of ETc), the same fruit yield was obtained compared to full irrigation without NABF. Therefore, the application of 60% ETc × NABF was explored to not only give a similar yield with higher quality compared to 100% ETc without NABF as well as increase WUE.

4.
Bioinorg Chem Appl ; : 457964, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20592758

RESUMO

Fly ash superficially modified with humic substances from the Megalopolis lignitic power plant was prepared and evaluated for agricultural uses. UV-vis spectrophotometry and IR spectroscopy revealed that fly ash shows high sorption efficiency towards humic substances. Adsorption proceeds stepwise via strong Coulombic and hydrophophic forces of attraction between guest and host materials. Langmuir, Freundlich, BET, Harkins-Jura, and Dubinin-Radushkevich isotherm models were employed to evaluate the ongoing adsorption and shed light to the physicochemical properties of the sorbent-adsorbate system. Humic substances desorption and microbial cultivation experiments were also carried out to examine the regeneration of the humates under washing and explore the possibility of this material acclimatizing in real soil conditions, both useful for biofunctional agricultural applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-20689709

RESUMO

Metal complexes bearing dichalcogenated imidodiphosphinate [R(2)P(E)NP(E)R(2)'](-) ligands (E = O, S, Se, Te), which act as (E,E) chelates, exhibit a remarkable variety of three-dimensional structures. A series of such complexes, namely, square-planar [Cu{(OPPh(2))(OPPh(2))N-O, O}(2)], tetrahedral [Zn{(EPPh(2))(EPPh(2))N-E,E}(2)], E = O, S, and octahedral [Ga{(OPPh(2))(OPPh(2))N-O,O}(3)], were tested as potential inhibitors of either the platelet activating factor (PAF)- or thrombin-induced aggregation in both washed rabbit platelets and rabbit platelet rich plasma. For comparison, square-planar [Ni{(Ph(2)P)(2)N-S-CHMePh-P, P}X(2)], X = Cl, Br, the corresponding metal salts of all complexes and the (OPPh(2))(OPPh(2))NH ligand were also investigated. Ga(O,O)(3) showed the highest anti-PAF activity but did not inhibit the thrombin-related pathway, whereas Zn(S,S)(2), with also a significant PAF inhibitory effect, exhibited the highest thrombin-related inhibition. Zn(O,O)(2) and Cu(O,O)(2) inhibited moderately both PAF and thrombin, being more effective towards PAF. This work shows that the PAF-inhibitory action depends on the structure of the complexes studied, with the bulkier Ga(O,O)(3) being the most efficient and selective inhibitor.

6.
J Colloid Interface Sci ; 291(1): 37-44, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15990108

RESUMO

Four aluminosilicate sorbents (montmorillonite, bentonite, raw perlite, and expanded perlite) were employed for retention of the cationic dye C.I. Basic Blue 41. Interactions between the clay and the dyestuff were investigated at several temperatures and clay:dye ratios. The mechanism behind the adsorption involves the formation of H-aggregates of the dye on both clays, followed by dye migration into the interlayer in the case of montmorillonite. Time-dependent absorbance spectra revealed the presence of various dye species in montmorillonite. Introduction of the dye molecules into the interlamellar space occurs more rapidly in bentonite than in montmorillonite. The dye molecules inserted between the clay leaves adopt different orientations and, eventually, stack in layers at increased dye loadings for both montmorillonite and bentonite. Higher dye aggregates are then present as suggested by diffuse reflectance spectroscopy. Dye sorption on both raw and expanded perlite proceeds via H-aggregate formation as well.

7.
Colloids Surf B Biointerfaces ; 81(1): 115-22, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20692818

RESUMO

Surface-modified expanded perlite was synthesized using humic substances from the Megalopolis peaty lignite. Adsorption is efficient and increases at higher temperatures and lower pHs. The preparation can be carried out under mild conditions leading to an eco-friendly, bioinorganic material useful as soil conditioner and biofertilizer. Six adsorption models were applied; the Klotz, Freundlich and Redlich-Peterson isotherms fit more successfully to the experimental data. The obeying of the theoretical models was correlated with the heterogeneity and non-uniform distribution of the adsorption sites, host-guest attraction forces as well as the formation of self-assembled aggregates and self-organized multilayers of humic substances onto the aluminosilicate adsorbent, consistent with changes in micromorphology. Thermodynamic quantities revealing distinct physicochemical characteristics of the adsorption phenomena, i.e., enthalpy, entropy and free energy change, were calculated. Desorption experiments and cultivation of microorganisms demonstrated that perlite may act successfully as host material for microbial populations upgrading the humic-loaded perlite for soil applications.


Assuntos
Óxido de Alumínio/química , Silicatos de Alumínio/química , Substâncias Húmicas , Dióxido de Silício/química , Adsorção , Contagem de Colônia Microbiana , Fertilizantes , Vidro/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Solo/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA