Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34242577

RESUMO

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Assuntos
Anticorpos Neutralizantes/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Antivirais/imunologia , Líquido da Lavagem Broncoalveolar/química , COVID-19/patologia , COVID-19/virologia , Citocinas/metabolismo , Feminino , Haplorrinos , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos , RNA Guia de Cinetoplastídeos/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Carga Viral , Replicação Viral
2.
PLoS Pathog ; 20(6): e1011569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900807

RESUMO

Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Fragmentos Fc das Imunoglobulinas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , SARS-CoV-2/imunologia , Camundongos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , Feminino , Domínios Proteicos/imunologia , Carga Viral , Pulmão/virologia , Pulmão/imunologia , Pulmão/patologia
3.
Immun Ageing ; 20(1): 30, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393237

RESUMO

BACKGROUND: Adjuvanted inactivated influenza vaccine (aIIV) and high-dose inactivated influenza vaccine (HD-IIV) are U.S.-licensed for adults aged ≥ 65 years. This study compared serum hemagglutination inhibition (HAI) antibody titers for the A(H3N2) and A(H1N1)pdm09 and B strains after trivalent aIIV3 and trivalent HD-IIV3 in an older adult population. RESULTS: The immunogenicity population included 342 participants who received aIIV3 and 338 participants who received HD-IIV3. The proportion of participants that seroconverted to A(H3N2) vaccine strains after allV3 (112 participants [32.8%]) was inferior to the proportion of participants that seroconverted after HD-IIV3 (130 participants [38.5%]) at day 29 after vaccination (difference, - 5.8%; 95%CI, - 12.9% to 1.4%). There were no significant differences between the vaccine groups in percent seroconversion to A(H1N1)pdm09 or B vaccine strains, in percent seropositivity for any of the strains, or in post-vaccination GMT for the A(H1N1)pdm09 strain. The GMTs for the post-vaccination A(H3N2) and B strains were higher after HD-IIV than after aIIV3. CONCLUSIONS: Overall immune responses were similar after aIIV3 and HD-IIV3. For the primary outcome, the aIIV3 seroconversion rate for H3N2 did not meet noninferiority criteria compared with HD-IIV3, but the HD-IIV3 seroconversion rate was not statistically superior to the aIIV3 seroconversion rate. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03183908.

4.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700599

RESUMO

The humoral response to invading mucosal pathogens comprises multiple antibody isotypes derived from systemic and mucosal compartments. To understand the contribution of each antibody isotype/source to the mucosal humoral response, parallel investigation of the specificities and functions of antibodies within and across isotypes and compartments is required. The role of IgA against HIV-1 is complex, with studies supporting a protective role as well as a role for serum IgA in blocking effector functions. Thus, we explored the fine specificity and function of IgA in both plasma and mucosal secretions important to infant HIV-1 infection, i.e., breast milk. IgA and IgG were isolated from milk and plasma from 20 HIV-1-infected lactating Malawian women. HIV-1 binding specificities, neutralization potency, inhibition of virus-epithelial cell binding, and antibody-mediated phagocytosis were measured. Fine-specificity mapping showed IgA and IgG responses to multiple HIV-1 Env epitopes, including conformational V1/V2 and linear V2, V3, and constant region 5 (C5). Env IgA was heterogeneous between the milk and systemic compartments (Env IgA, τ = 0.00 to 0.63, P = 0.0046 to 1.00). Furthermore, IgA and IgG appeared compartmentalized as there was a lack of correlation between the specificities of Env-specific IgA and IgG (in milk, τ = -0.07 to 0.26, P = 0.35 to 0.83). IgA and IgG also differed in functions: while neutralization and phagocytosis were consistently mediated by milk and plasma IgG, they were rarely detected in IgA from both milk and plasma. Understanding the ontogeny of the divergent IgG and IgA antigen specificity repertoires and their effects on antibody function will inform vaccination approaches targeted toward mucosal pathogens.IMPORTANCE Antibodies within the mucosa are part of the first line of defense against mucosal pathogens. Evaluating mucosal antibody isotypes, specificities, and antiviral functions in relationship to the systemic antibody profile can provide insights into whether the antibody response is coordinated in response to mucosal pathogens. In a natural immunity cohort of HIV-infected lactating women, we mapped the fine specificity and function of IgA in breast milk and plasma and compared these with the autologous IgG responses. Antigen specificities and functions differed between IgG and IgA, with antiviral functions (neutralization and phagocytosis) predominantly mediated by the IgG fraction in both milk and plasma. Furthermore, the specificity of milk IgA differed from that of systemic IgA. Our data suggest that milk IgA and systemic IgA should be separately examined as potential correlates of risk. Preventive vaccines may need to employ different strategies to elicit functional antiviral immunity by both antibody isotypes in the mucosa.


Assuntos
Antivirais/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunoglobulina A/imunologia , Leite Humano/imunologia , Plasma/imunologia , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Epitopos/imunologia , Feminino , Células HEK293 , Anticorpos Anti-HIV/imunologia , Células HT29 , Humanos , Imunoglobulina G/imunologia , Lactação/imunologia , Gravidez
5.
J Immunol ; 201(4): 1315-1326, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006374

RESUMO

Ab avidity is a measure of the overall strength of Ab-Ag interactions and hence is important for understanding the functional efficiency of Abs. In vaccine evaluations, Ab avidity measurements can provide insights into immune correlates of protection and generate hypotheses regarding mechanisms of protection to improve vaccine design to achieve higher levels of efficacy. The commonly used Ab avidity assays require the use of chaotropic reagents to measure avidity index. In this study, using real-time detection of Ab-Ag binding by biolayer interferometry (BLI) technique, we have developed a qualified assay for measuring avidity of vaccine-induced Abs specific for Plasmodium falciparum circumsporozoite protein (CSP) Ags. Human mAb derived from plasmablasts of recipients of RTS,S/AS01 (RTS,S), the most advanced malaria vaccine candidate, were used in the assay development to measure Ag-specific binding responses and rate constants of association and dissociation. The optimized BLI binding assay demonstrated 1) good precision (percentage of coefficient of variation <20), 2) high specificity, 3) a lower limit of detection and quantitation in the 0.3-3.3 nM range, and 4) a range of linearity up to 50-100 nM for the CSP Ags tested. Analysis of polyclonal sera of malaria vaccinees demonstrated the suitability of this method to distinguish among vaccinees and rank Ab responses by avidity. These results demonstrate that precise, specific, and sensitive BLI measurements of Ab avidity in polyclonal sera from malaria vaccinees can map Ab response heterogeneity and potentially help to determine the role of Ab avidity as an immune correlate of protection for vaccines.


Assuntos
Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Interferometria/métodos , Vacinas Antimaláricas/imunologia , Humanos , Malária Falciparum/imunologia , Plasmodium falciparum
6.
J Clin Microbiol ; 56(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29793968

RESUMO

Detection of acute HIV infection is critical for HIV public health and diagnostics. Clinical fourth-generation antigen (Ag)/antibody (Ab) combination (combo) and p24 Ag immunoassays have enhanced detection of acute infection compared to Ab-alone assays but require ongoing evaluation with currently circulating diverse subtypes. Genetically and geographically diverse HIV clinical isolates were used to assess clinical HIV diagnostic, blood screening, and next-generation assays. Three-hundred-member panels of 20 serially diluted well-characterized antibody-negative HIV isolates for which the researchers were blind to the results (blind panels) were distributed to manufacturers and end-user labs to assess the relative analytic sensitivity of currently approved and preapproved clinical HIV fourth-generation Ag/Ab combo or p24 Ag-alone immunoassays for the detection of diverse subtypes. The limits of detection (LODs) of virus were estimated for different subtypes relative to confirmed viral loads. Analysis of immunoassay sensitivity was benchmarked against confirmed viral load measurements on the blind panel. On the basis of the proportion of positive results on 300 observations, all Ag/Ab combo and standard sensitivity p24 Ag assays performed similarly and within half-log LODs, illustrating the similar breadth of reactivity and diagnostic utility. Ultrasensitive p24 Ag assays achieved dramatically increased sensitivities, while the rapid combo assays performed poorly. The similar performance of the different commercially available fourth-generation assays on diverse subtypes supports their use in broad geographic settings with locally circulating HIV clades and recombinant strains. Next-generation preclinical ultrasensitive p24 Ag assays achieved dramatically improved sensitivity, while rapid fourth-generation assays performed poorly for p24 Ag detection.


Assuntos
Sorodiagnóstico da AIDS/métodos , Sorodiagnóstico da AIDS/normas , Proteína do Núcleo p24 do HIV/sangue , Proteína do Núcleo p24 do HIV/imunologia , Infecções por HIV/diagnóstico , HIV/isolamento & purificação , Imunoensaio/normas , Carga Viral/normas , Benchmarking , HIV/imunologia , Anticorpos Anti-HIV/sangue , Antígenos HIV/sangue , Antígenos HIV/imunologia , Infecções por HIV/sangue , Humanos , Limite de Detecção , Sensibilidade e Especificidade
7.
J Virol ; 89(1): 784-98, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355869

RESUMO

UNLABELLED: It is generally acknowledged that human broadly neutralizing antibodies (bNAbs) capable of neutralizing multiple HIV-1 clades are often polyreactive or autoreactive. Whereas polyreactivity or autoreactivity has been proposed to be crucial for neutralization breadth, no systematic, quantitative study of self-reactivity among nonneutralizing HIV-1 Abs (nNAbs) has been performed to determine whether poly- or autoreactivity in bNAbs is a consequence of chronic antigen (Ag) exposure and/or inflammation or a fundamental property of neutralization. Here, we use protein microarrays to assess binding to >9,400 human proteins and find that as a class, bNAbs are significantly more poly- and autoreactive than nNAbs. The poly- and autoreactive property is therefore not due to the infection milieu but rather is associated with neutralization. Our observations are consistent with a role of heteroligation for HIV-1 neutralization and/or structural mimicry of host Ags by conserved HIV-1 neutralization sites. Although bNAbs are more mutated than nNAbs as a group, V(D)J mutation per se does not correlate with poly- and autoreactivity. Infrequent poly- or autoreactivity among nNAbs implies that their dominance in humoral responses is due to the absence of negative control by immune regulation. Interestingly, four of nine bNAbs specific for the HIV-1 CD4 binding site (CD4bs) (VRC01, VRC02, CH106, and CH103) bind human ubiquitin ligase E3A (UBE3A), and UBE3A protein competitively inhibits gp120 binding to the VRC01 bNAb. Among these four bNAbs, avidity for UBE3A was correlated with neutralization breadth. Identification of UBE3A as a self-antigen recognized by CD4bs bNAbs offers a mechanism for the rarity of this bNAb class. IMPORTANCE: Eliciting bNAbs is key for HIV-1 vaccines; most Abs elicited by HIV-1 infection or immunization, however, are strain specific or nonneutralizing, and unsuited for protection. Here, we compare the specificities of bNAbs and nNAbs to demonstrate that bNAbs are significantly more poly- and autoreactive than nNAbs. The strong association of poly- and autoreactivity with bNAbs, but not nNAbs from infected patients, indicates that the infection milieu, chronic inflammation and Ag exposure, CD4 T-cell depletion, etc., alone does not cause poly- and autoreactivity. Instead, these properties are fundamentally linked to neutralization breadth, either by the requirement for heteroligation or the consequence of host mimicry by HIV-1. Indeed, we show that human UBE3A shares an epitope(s) with HIV-1 envelope recognized by four CD4bs bNAbs. The poly- and autoreactivity of bNAbs surely contribute to the rarity of membrane-proximal external region (MPER) and CD4bs bNAbs and identify a roadblock that must be overcome to induce protective vaccines.


Assuntos
Autoanticorpos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Humanos , Análise em Microsséries , Análise Serial de Proteínas , Ligação Proteica
8.
J Virol ; 89(19): 9952-61, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202232

RESUMO

UNLABELLED: Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE: Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation.


Assuntos
Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1 , Imunoglobulina A/metabolismo , Transmissão Vertical de Doenças Infecciosas , Leite Humano/imunologia , Leite Humano/virologia , Adulto , Anticorpos Neutralizantes/metabolismo , Especificidade de Anticorpos , Citotoxicidade Celular Dependente de Anticorpos , Aleitamento Materno/efeitos adversos , Feminino , Anticorpos Anti-HIV/sangue , Infecções por HIV/complicações , HIV-1/imunologia , Humanos , Imunidade nas Mucosas , Imunoglobulina A/sangue , Imunoglobulina A Secretora/metabolismo , Imunoglobulina G/metabolismo , Lactente , Recém-Nascido , Malaui , Modelos Imunológicos , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Fatores de Risco , Adulto Jovem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
9.
J Immunol Methods ; 531: 113699, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823575

RESUMO

Bead array assays, such as those sold by Luminex, BD Biosciences, Sartorius, Abcam and other companies, are a well-established platform for multiplexed quantification of cytokines and other biomarkers in both clinical and discovery research environments. In 2011, the National Institute of Allergy and Infectious Diseases (NIAID)-funded External Quality Assurance Program Oversight Laboratory (EQAPOL) established a proficiency assessment program to monitor participating laboratories performing multiplex cytokine measurements using Luminex bead array technology. During every assessment cycle, each site was sent an assay kit, a protocol, and blinded samples of human sera spiked with recombinant cytokines. Site results were then evaluated for performance relative to peer laboratories. After over a decade of biannual assessments, the cumulative dataset contained over 15,500 bead array observations collected at more than forty laboratories in twelve countries. These data were evaluated alongside post-assessment survey results to empirically test factors that may contribute to variability and accuracy in Luminex bead-based cytokine assays. Bead material, individual technical ability, analyte, analyte concentration, and assay kit vendor were identified as significant contributors to assay performance. In contrast, the bead reader instrument model and the use of automated plate washers were found not to contribute to variability or accuracy, and sample results were found to be highly-consistent between assay kit-manufacturing lots and over time. In addition to these statistical analyses, subjective evaluations identified technical ability, instrument failure, protocol adherence, and data transcription errors as the most common causes of poor performance in the proficiency program. The findings from the EQAPOL multiplex program were then used to develop recommended best practices for bead array monitoring of human cytokines. These included collecting samples to assay as a single batch, centralizing analysis, participating in a quality assurance program, and testing samples using paramagnetic-bead kits from a single manufacturer using a standardized protocol.


Assuntos
Citocinas , Ensaio de Proficiência Laboratorial , Humanos , Citocinas/sangue , Reprodutibilidade dos Testes , Controle de Qualidade , Imunoensaio/métodos , Imunoensaio/normas , Estados Unidos , Biomarcadores/sangue
10.
Front Immunol ; 15: 1356638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550590

RESUMO

Lymphocyte telomere length (TL) is highly variable and shortens with age. Short telomeres may impede TL-dependent T-cell clonal expansion with viral infection. As SARS-CoV-2 infection can induce prolonged and severe T-cell lymphopenia, infected adults, and particularly older adults with short telomeres, may display severe T-cell lymphopenia. To examine the relationship between T-cell TL parameters and T-cell counts, we studied 40 patients hospitalized with severe COVID-19. T-cells were isolated from lymphocytes, counted using flow cytometry, and their TL parameters were measured using the Telomere Shortest Length Assay. The cohort (median age = 62 years, 27% female) was racially and ethnically diverse (33% White, 35% Black, and 33% Other). On intensive care unit study day 1, T-cell count (mean=1.03 x109/L) was inversely related to age (p=0.007) and higher in females than males (p=0.025). Mean TL was 3.88 kilobases (kb), and 45.3% of telomeres were shorter than 3 kb. Using multiple regression analysis and adjusting for age and sex, T-cell count decreased with increased proportion of T-cell telomeres shorter than 3 kb (p=0.033) and increased with mean TL (p=0.052). Our findings suggest an association between the buildup of short telomeres within T-cells and explain in part reduced peripheral blood T-cell counts in patients with severe COVID-19. Shortened T-cell telomeres may be a risk factor for COVID-19-associated T-cell lymphopenia.


Assuntos
COVID-19 , Linfopenia , Masculino , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Linfócitos T , SARS-CoV-2 , Contagem de Linfócitos , Telômero
11.
bioRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39026709

RESUMO

Natural killer (NK) cells kill target cells following triggering via germline-encoded receptors interacting with target cell-expressed ligands (direct killing), or via antibody-dependent cellular cytotoxicity (ADCC) mediated by FcγRIIIa. NK cytotoxicity is modulated by signaling through activating or inhibitory receptors. A major checkpoint is mediated by the NK inhibitory receptor NKG2A/CD94 and its target cell ligand, HLA-E, which is complexed with HLA signal sequence-derived peptides termed VL9 (HLA-E-VL9). We have previously reported the isolation of a murine HLA-E-VL9-specific IgM antibody 3H4 and the generation of a higher affinity IgG version (3H4v3). Here we have used phage display library selection to generate a high affinity version of 3H4v3, called 3H4v31, with an ∼700 fold increase in binding affinity. We show using an HLA-E-VL9+ K562 tumor model that, in vitro, the addition of 3H4v31 to target cells increased direct killing of targets by CD16-negative NK cell line NK-92 and also mediated ADCC by NK-92 cells transfected with CD16. Moreover, ADCC by primary NK cells was also enhanced in vitro by 3H4v31. 3H4v31 was also able to bind and enhance target cell lysis of endogenously expressed HLA-E-VL9 on human cervical cancer and human pancreatic cancer cell lines. In vivo, 3H4v31 slowed the growth rate of HLA-E-VL9+ K562 tumors implanted into NOD/SCID/IL2rγ null mice compared to isotype control when injected with NK-92 cells intratumorally. Together, these data demonstrate that mAb 3H4v31 can enhance NK cell killing of HLA-E-VL9-expressing tumor cells in vitro by both direct killing activity and by ADCC. Moreover, mAb 3H4v31 can enhance NK cell control of tumor growth in vivo. We thus identify HLA-E-VL9 monoclonal antibodies as a promising novel anti-tumor immunotherapy. One Sentence Summary: A high affinity monoclonal antibody against HLA-E-VL9 enhances natural killer cell anti-tumor killing by checkpoint inhibition and antibody dependent cellular cytotoxicity.

12.
J Immunol Methods ; 515: 113452, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858170

RESUMO

The use of conventional serum for supplementation of media in cell-based and single-cell functional assays has been a major challenge for assay performance, standardization, optimization, and reproducibility. It has been identified as the leading cause of variability and suboptimal performance in large, international Elispot proficiency panels (Janetzki et al., 2008; Rountree et al., 2016). Extensive pretesting and optimization activities are one approach to overcome these challenges, but they are time-consuming and resource-intensive because suitable lots of serum are difficult to identify and secure in sufficient quantities to provide stability in long-term studies. Advancements in manufacturing methods have resulted in a new class of serum with the potential to solve these challenges. An IFNÉ£ Elispot study was designed by the External Quality Assurance Program Oversight Laboratory (EQAPOL) at Duke Human Vaccine Institute's (DHVI) Immunology and Virology Quality Assessment Center (IVQAC) to test this new class of serum against their in-house, validated control serum, which is regarded as a global standard in performance for high functionality, recovery, and viability. Commonly used serum-free media were also included in the study. The results of this study compellingly demonstrate that this new class of serum produces high responses and low background reactivity comparable to the included serum standard, with excellent recovery and viability of cells. A protocol for ongoing testing has been developed to continuously validate new batches of this serum with the goal to make available to the field a pretested and validated serum that can be used with confidence in functional cell-based assays.


Assuntos
Laboratórios , Humanos , Reprodutibilidade dos Testes , ELISPOT , Padrões de Referência
13.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546738

RESUMO

Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of this non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb infusion did not suppress infectious viral titers in the lung as potently as NTD neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Finally, Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection in SARS-CoV-2 infection. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.

14.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187726

RESUMO

Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.

15.
AIDS Behav ; 16(7): 1830-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22143633

RESUMO

Vaginal microbicide gel trials for HIV prevention may require withdrawal of study product when a woman becomes pregnant. We assessed the potential impact of withdrawals in four trials by comparing self-reported sexual behavior pre- and post-pregnancy detection: (1) behavior in the month prior to positive pregnancy test versus behavior reported at the subsequent monthly visit; (2) behavior changes according to pregnancy status at the subsequent visit (continuing pregnancy versus not); (3) average sexual behaviors reported for all months prior to pregnancy detection versus all months after pregnancy was no longer detected; and (4) behavior changes among participants never testing positive for pregnancy. Pregnancy detection was associated with immediate reductions in self-reported numbers of partners and sex acts. The proportion of acts in which study gel was used following a negative pregnancy test did not return to pre-pregnancy levels. Pregnancies complicate the conduct and interpretation of vaginal microbicide trials when product must be withdrawn.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Ensaios Clínicos como Assunto , Infecções por HIV/prevenção & controle , Gravidez , Comportamento Sexual/estatística & dados numéricos , Administração Intravaginal , Adulto , Feminino , Infecções por HIV/diagnóstico , Humanos , Masculino , Fatores de Risco , Autorrelato , Parceiros Sexuais , Cremes, Espumas e Géis Vaginais , Adulto Jovem
16.
Cell Rep ; 39(13): 111021, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767950

RESUMO

HIV-1 envelope (Env) proteins designed to induce neutralizing antibody responses allow study of the role of affinities (equilibrium dissociation constant [KD]) and kinetic rates (association/dissociation rates) on B cell antigen recognition. It is unclear whether affinity discrimination during B cell activation is based solely on Env protein binding KD and whether B cells discriminate among proteins of similar affinities that bind with different kinetic rates. Here, we use a panel of Env proteins and Ramos B cell lines expressing immunoglobulin M (IgM) B cell receptors (BCRs) with specificity for CD4-binding-site broadly neutralizing antibodies to study the role of antigen binding kinetic rates on both early (proximal/distal signaling) and late events (BCR/antigen internalization) in B cell activation. Our results support a kinetic model for B cell activation in which Env protein affinity discrimination is based not on overall KD but on sensing of association rate and a threshold antigen-BCR half-life.


Assuntos
HIV-1 , Anticorpos Neutralizantes , Antígenos Virais , Anticorpos Anti-HIV , Imunoglobulina M , Receptores de Antígenos de Linfócitos B/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana
17.
Commun Biol ; 5(1): 271, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347236

RESUMO

The non-classical class Ib molecule human leukocyte antigen E (HLA-E) has limited polymorphism and can bind HLA class Ia leader peptides (VL9). HLA-E-VL9 complexes interact with the natural killer (NK) cell receptors NKG2A-C/CD94 and regulate NK cell-mediated cytotoxicity. Here we report the isolation of 3H4, a murine HLA-E-VL9-specific IgM antibody that enhances killing of HLA-E-VL9-expressing cells by an NKG2A+ NK cell line. Structural analysis reveal that 3H4 acts by preventing CD94/NKG2A docking on HLA-E-VL9. Upon in vitro maturation, an affinity-optimized IgG form of 3H4 showes enhanced NK killing of HLA-E-VL9-expressing cells. HLA-E-VL9-specific IgM antibodies similar in function to 3H4 are also isolated from naïve B cells of cytomegalovirus (CMV)-negative, healthy humans. Thus, HLA-E-VL9-targeting mouse and human antibodies isolated from the naïve B cell antibody pool have the capacity to enhance NK cell cytotoxicity.


Assuntos
Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe I , Animais , Antígenos HLA , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoglobulinas/metabolismo , Células Matadoras Naturais , Camundongos , Peptídeos/metabolismo , Sinais Direcionadores de Proteínas , Antígenos HLA-E
18.
Cell Rep ; 38(11): 110514, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294883

RESUMO

The success of nucleoside-modified mRNAs in lipid nanoparticles (mRNA-LNP) as COVID-19 vaccines heralded a new era of vaccine development. For HIV-1, multivalent envelope (Env) trimer protein nanoparticles are superior immunogens compared with trimers alone for priming of broadly neutralizing antibody (bnAb) B cell lineages. The successful expression of complex multivalent nanoparticle immunogens with mRNAs has not been demonstrated. Here, we show that mRNAs can encode antigenic Env trimers on ferritin nanoparticles that initiate bnAb precursor B cell expansion and induce serum autologous tier 2 neutralizing activity in bnAb precursor VH + VL knock-in mice. Next-generation sequencing demonstrates acquisition of critical mutations, and monoclonal antibodies that neutralize heterologous HIV-1 isolates are isolated. Thus, mRNA-LNP can encode complex immunogens and may be of use in design of germline-targeting and sequential boosting immunogens for HIV-1 vaccine development.


Assuntos
Vacinas contra a AIDS , COVID-19 , HIV-1 , Nanopartículas , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Vacinas contra COVID-19 , Epitopos , Ferritinas/genética , Anticorpos Anti-HIV , Humanos , Lipossomos , Camundongos , RNA Mensageiro , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
19.
Nat Commun ; 13(1): 6309, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274085

RESUMO

Coronavirus vaccines that are highly effective against current and anticipated SARS-CoV-2 variants are needed to control COVID-19. We previously reported a receptor-binding domain (RBD)-sortase A-conjugated ferritin nanoparticle (scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected non-human primates (NHPs) from SARS-CoV-2 WA-1 infection. Here, we find the RBD-scNP induced neutralizing antibodies in NHPs against pseudoviruses of SARS-CoV and SARS-CoV-2 variants including 614G, Beta, Delta, Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5, and a designed variant with escape mutations, PMS20. Adjuvant studies demonstrate variant neutralization titers are highest with 3M-052-aqueous formulation (AF). Immunization twice with RBD-scNPs protect NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protect mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect animals from multiple different SARS-related viruses. Such a vaccine could provide broad immunity to SARS-CoV-2 variants.


Assuntos
COVID-19 , Nanopartículas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Camundongos , Animais , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , COVID-19/prevenção & controle , Anticorpos Neutralizantes/química , Ferritinas
20.
bioRxiv ; 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35118474

RESUMO

Coronavirus vaccines that are highly effective against SARS-CoV-2 variants are needed to control the current pandemic. We previously reported a receptor-binding domain (RBD) sortase A-conjugated ferritin nanoparticle (RBD-scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected monkeys from SARS-CoV-2 WA-1 infection. Here, we demonstrate SARS-CoV-2 RBD-scNP immunization induces potent neutralizing antibodies in non-human primates (NHPs) against all eight SARS-CoV-2 variants tested including the Beta, Delta, and Omicron variants. The Omicron variant was neutralized by RBD-scNP-induced serum antibodies with a mean of 10.6-fold reduction of ID50 titers compared to SARS-CoV-2 D614G. Immunization with RBD-scNPs protected NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protected mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect NHPs and mice from multiple different SARS-related viruses. Such a vaccine could provide the needed immunity to slow the spread of and reduce disease caused by SARS-CoV-2 variants such as Delta and Omicron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA