Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10664-10674, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38850427

RESUMO

New particle formation (NPF) is a major source of atmospheric aerosol particles, including cloud condensation nuclei (CCN), by number globally. Previous research has highlighted that NPF is less frequent but more intense at roadsides compared to urban background. Here, we closely examine NPF at both background and roadside sites in urban Central Europe. We show that the concentration of oxygenated organic molecules (OOMs) is greater at the roadside, and the condensation of OOMs along with sulfuric acid onto new particles is sufficient to explain the growth at both sites. We identify a hitherto unreported traffic-related OOM source contributing 29% and 16% to total OOMs at the roadside and background, respectively. Critically, this hitherto undiscovered OOM source is an essential component of urban NPF. Without their contribution to growth rates and the subsequent enhancements to particle survival, the number of >50 nm particles produced by NPF would be reduced by a factor of 21 at the roadside site. Reductions to hydrocarbon emissions from road traffic may thereby reduce particle numbers and CCN counts.


Assuntos
Material Particulado , Emissões de Veículos , Poluentes Atmosféricos , Monitoramento Ambiental , Tamanho da Partícula , Aerossóis
2.
Environ Sci Technol ; 57(12): 4741-4750, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930743

RESUMO

New particle formation (NPF) is a leading source of particulate matter by number and a contributor to particle mass during haze events. Reductions in emissions of air pollutants, many of which are NPF precursors, are expected in the move toward carbon neutrality or net-zero. Expected changes to pollutant emissions are used to investigate future changes to NPF processes, in comparison to a simulation of current conditions. The projected changes to SO2 emissions are key in changing future NPF number, with different scenarios producing either a doubling or near total reduction in sulfuric acid-amine particle formation rates. Particle growth rates are projected to change little in all but the strictest emission control scenarios. These changes will reduce the particle mass arising by NPF substantially, thus showing a further cobenefit of net-zero policies. Major uncertainties remain in future NPF including the volatility of oxygenated organic molecules resulting from changes to NOx and amine emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pequim , Tamanho da Partícula , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Aminas , Poluição do Ar/prevenção & controle , Poluição do Ar/análise
3.
J Aging Soc Policy ; 30(3-4): 316-336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641942

RESUMO

This commentary provides background on the current state of American retirement, highlights recent efforts to reform retirement policy, and predicts what to expect under President Donald Trump. Retirement has not been a major focus of national policy makers in recent years. Early actions during the Trump administration to undo Obama administration policies may make it more difficult for individuals to save for retirement. While it is impossible to predict the future with any certainty, long-standing trends and recent political developments suggest that major action will not be taken during the Trump presidency to boost retirement security.


Assuntos
Política , Política Pública , Aposentadoria/tendências , Humanos , Pensões/estatística & dados numéricos , Previdência Social/economia , Previdência Social/tendências , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA