Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 31(12): 2947-2972, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31628167

RESUMO

Flowers are essential but vulnerable plant organs, exposed to pollinators and florivores; however, flower chemical defenses are rarely investigated. We show here that two clustered terpene synthase and cytochrome P450 encoding genes (TPS11 and CYP706A3) on chromosome 5 of Arabidopsis (Arabidopsis thaliana) are tightly coexpressed in floral tissues, upon anthesis and during floral bud development. TPS11 was previously reported to generate a blend of sesquiterpenes. By heterologous coexpression of TPS11 and CYP706A3 in yeast (Saccharomyces cerevisiae) and Nicotiana benthamiana, we demonstrate that CYP706A3 is active on TPS11 products and also further oxidizes its own primary oxidation products. Analysis of headspace and soluble metabolites in cyp706a3 and 35S:CYP706A3 mutants indicate that CYP706A3-mediated metabolism largely suppresses sesquiterpene and most monoterpene emissions from opening flowers, and generates terpene oxides that are retained in floral tissues. In flower buds, the combined expression of TPS11 and CYP706A3 also suppresses volatile emissions and generates soluble sesquiterpene oxides. Florivory assays with the Brassicaceae specialist Plutella xylostella demonstrate that insect larvae avoid feeding on buds expressing CYP706A3 and accumulating terpene oxides. Composition of the floral microbiome appears also to be modulated by CYP706A3 expression. TPS11 and CYP706A3 simultaneously evolved within Brassicaceae and form the most versatile functional gene cluster described in higher plants so far.plantcell;31/12/2947/FX1F1fx1.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/metabolismo , Terpenos/antagonistas & inibidores , Alquil e Aril Transferases/genética , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Flores/genética , Flores/microbiologia , Expressão Gênica , Larva , Microbiota , Modelos Moleculares , Simulação de Acoplamento Molecular , Monoterpenos/metabolismo , Mariposas , Família Multigênica , Filogenia , Sesquiterpenos/metabolismo , Terpenos/química , Terpenos/metabolismo , Nicotiana/metabolismo , Leveduras/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(23): E5410-E5418, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784821

RESUMO

Gossypol and related sesquiterpene aldehydes in cotton function as defense compounds but are antinutritional in cottonseed products. By transcriptome comparison and coexpression analyses, we identified 146 candidates linked to gossypol biosynthesis. Analysis of metabolites accumulated in plants subjected to virus-induced gene silencing (VIGS) led to the identification of four enzymes and their supposed substrates. In vitro enzymatic assay and reconstitution in tobacco leaves elucidated a series of oxidative reactions of the gossypol biosynthesis pathway. The four functionally characterized enzymes, together with (+)-δ-cadinene synthase and the P450 involved in 7-hydroxy-(+)-δ-cadinene formation, convert farnesyl diphosphate (FPP) to hemigossypol, with two gaps left that each involves aromatization. Of six intermediates identified from the VIGS-treated leaves, 8-hydroxy-7-keto-δ-cadinene exerted a deleterious effect in dampening plant disease resistance if accumulated. Notably, CYP71BE79, the enzyme responsible for converting this phytotoxic intermediate, exhibited the highest catalytic activity among the five enzymes of the pathway assayed. In addition, despite their dispersed distribution in the cotton genome, all of the enzyme genes identified show a tight correlation of expression. Our data suggest that the enzymatic steps in the gossypol pathway are highly coordinated to ensure efficient substrate conversion.


Assuntos
Gossipol/biossíntese , Gossipol/metabolismo , Vias Biossintéticas , Gossypium/metabolismo , Isomerases/biossíntese , Isomerases/metabolismo , Folhas de Planta/metabolismo , Sesquiterpenos Policíclicos , Sesquiterpenos/metabolismo , Transcriptoma/efeitos dos fármacos
3.
Biochem J ; 451(3): 417-26, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23438177

RESUMO

Most TPSs (terpene synthases) contain plasticity residues that are responsible for diversified terpene products and functional evolution, which provide a potential for improving catalytic efficiency. Artemisinin, a sesquiterpene lactone from Artemisia annua L., is widely used for malaria treatment and progress has been made in engineering the production of artemisinin or its precursors. In the present paper, we report a new sesquiterpene synthase from A. annua, AaBOS (A. annua α-bisabolol synthase), which has high sequence identity with AaADS (A. annua amorpha-4,11-diene synthase), a key enzyme in artemisinin biosynthesis. Comparative analysis of the two enzymes by domain-swapping and structure-based mutagenesis led to the identification of several plasticity residues, whose alteration changed the product profile of AaBOS to include γ-humulene as the major product. To elucidate the underlying mechanisms, we solved the crystal structures of AaBOS and a γ-humulene-producing AaBOS mutant (termed AaBOS-M2). Among the plasticity residues, position 399, located in the substrate-binding pocket, is crucial for both enzymes. In AaBOS, substitution of threonine for leucine (AaBOSL339T) is required for γ-humulene production; whereas in AaADS, replacing the threonine residue with serine (AaADST399S) resulted in a substantial increase in the activity of amorpha-4,11-diene production, probably as a result of accelerated product release. The present study demonstrates that substitution of plasticity residues has potential for improving catalytic efficiency of the enzyme.


Assuntos
Alquil e Aril Transferases/química , Artemisia annua/enzimologia , Artemisininas/metabolismo , Proteínas de Plantas/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Artemisia annua/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Leucina/química , Leucina/genética , Leucina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Sesquiterpenos Monocíclicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina/química , Serina/genética , Serina/metabolismo , Sesquiterpenos/metabolismo , Relação Estrutura-Atividade , Treonina/química , Treonina/genética , Treonina/metabolismo
4.
Front Plant Sci ; 7: 638, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242840

RESUMO

Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, ß-myrcene. Although both Mg(2+) and Mn(2+) were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn(2+) for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant.

5.
Sci Rep ; 5: 14139, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26420475

RESUMO

Of the two cultivated species of allopolyploid cotton, Gossypium barbadense produces extra-long fibers for the production of superior textiles. We sequenced its genome (AD)2 and performed a comparative analysis. We identified three bursts of retrotransposons from 20 million years ago (Mya) and a genome-wide uneven pseudogenization peak at 11-20 Mya, which likely contributed to genomic divergences. Among the 2,483 genes preferentially expressed in fiber, a cell elongation regulator, PRE1, is strikingly At biased and fiber specific, echoing the A-genome origin of spinnable fiber. The expansion of the PRE members implies a genetic factor that underlies fiber elongation. Mature cotton fiber consists of nearly pure cellulose. G. barbadense and G. hirsutum contain 29 and 30 cellulose synthase (CesA) genes, respectively; whereas most of these genes (>25) are expressed in fiber, genes for secondary cell wall biosynthesis exhibited a delayed and higher degree of up-regulation in G. barbadense compared with G. hirsutum, conferring an extended elongation stage and highly active secondary wall deposition during extra-long fiber development. The rapid diversification of sesquiterpene synthase genes in the gossypol pathway exemplifies the chemical diversity of lineage-specific secondary metabolites. The G. barbadense genome advances our understanding of allopolyploidy, which will help improve cotton fiber quality.


Assuntos
Evolução Biológica , Fibra de Algodão , Genoma de Planta , Genômica , Gossypium/genética , Gossypium/metabolismo , Metabolômica , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Cromossomos de Plantas , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Estudos de Associação Genética , Genômica/métodos , Metabolômica/métodos , Anotação de Sequência Molecular , Fenótipo , Filogenia , Poliploidia , Característica Quantitativa Herdável , Sesquiterpenos/metabolismo , Translocação Genética , Fitoalexinas
6.
Phytochemistry ; 96: 46-56, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24074555

RESUMO

Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into ß-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, ß-pinene, ß-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.


Assuntos
Alquil e Aril Transferases/isolamento & purificação , Alquil e Aril Transferases/metabolismo , Gossypium/enzimologia , Acetatos/metabolismo , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/metabolismo , Monoterpenos Cicloexânicos , Cicloexenos/metabolismo , Ciclopentanos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Gossypium/genética , Liases Intramoleculares/metabolismo , Sesquiterpenos Monocíclicos , Monoterpenos/metabolismo , Oxilipinas/metabolismo , Sesquiterpenos Policíclicos , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Sesquiterpenos de Guaiano/metabolismo , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Fitoalexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA