Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38652613

RESUMO

With the rapid development of Quantum Machine Learning, quantum neural networks (QNN) have experienced great advancement in the past few years, harnessing the advantages of quantum computing to significantly speed up classical machine learning tasks. Despite their increasing popularity, the quantum neural network is quite counter-intuitive and difficult to understand, due to their unique quantum-specific layers (e.g., data encoding and measurement) in their architecture. It prevents QNN users and researchers from effectively understanding its inner workings and exploring the model training status. To fill the research gap, we propose VIOLET, a novel visual analytics approach to improve the explainability of quantum neural networks. Guided by the design requirements distilled from the interviews with domain experts and the literature survey, we developed three visualization views: the Encoder View unveils the process of converting classical input data into quantum states, the Ansatz View reveals the temporal evolution of quantum states in the training process, and the Feature View displays the features a QNN has learned after the training process. Two novel visual designs, i.e., satellite chart and augmented heatmap, are proposed to visually explain the variational parameters and quantum circuit measurements respectively. We evaluate VIOLET through two case studies and in-depth interviews with 12 domain experts. The results demonstrate the effectiveness and usability of VIOLET in helping QNN users and developers intuitively understand and explore quantum neural networks.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37966932

RESUMO

Quantum computing offers significant speedup compared to classical computing, which has led to a growing interest among users in learning and applying quantum computing across various applications. However, quantum circuits, which are fundamental for implementing quantum algorithms, can be challenging for users to understand due to their underlying logic, such as the temporal evolution of quantum states and the effect of quantum amplitudes on the probability of basis quantum states. To fill this research gap, we propose QuantumEyes, an interactive visual analytics system to enhance the interpretability of quantum circuits through both global and local levels. For the global-level analysis, we present three coupled visualizations to delineate the changes of quantum states and the underlying reasons: a Probability Summary View to overview the probability evolution of quantum states; a State Evolution View to enable an in-depth analysis of the influence of quantum gates on the quantum states; a Gate Explanation View to show the individual qubit states and facilitate a better understanding of the effect of quantum gates. For the local-level analysis, we design a novel geometrical visualization dandelion chart to explicitly reveal how the quantum amplitudes affect the probability of the quantum state. We thoroughly evaluated QuantumEyes as well as the novel dandelion chart integrated into it through two case studies on different types of quantum algorithms and in-depth expert interviews with 12 domain experts. The results demonstrate the effectiveness and usability of our approach in enhancing the interpretability of quantum circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA