RESUMO
Liquid protein condensates produced by phase separation are involved in the spatiotemporal control of cellular functions, while solid fibrous aggregates (amyloids) are associated with diseases and/or manifest as infectious or heritable elements (prions). Relationships between these assemblies are poorly understood. The Saccharomyces cerevisiae release factor Sup35 can produce both fluid liquid-like condensates (e.g., at acidic pH) and amyloids (typically cross-seeded by other prions). We observed acidification-independent formation of Sup35-based liquid condensates in response to hyperosmotic shock in the absence of other prions, both at increased and physiological expression levels. The Sup35 prion domain, Sup35N, is both necessary and sufficient for condensate formation, while the middle domain, Sup35M antagonizes this process. Formation of liquid condensates in response to osmotic stress is conserved within yeast evolution. Notably, condensates of Sup35N/NM protein originated from the distantly related yeast Ogataea methanolica can directly convert to amyloids in osmotically stressed S. cerevisiae cells, providing a unique opportunity for real-time monitoring of condensate-to-fibril transition in vivo by fluorescence microscopy. Thus, cellular fate of stress-induced condensates depends on protein properties and/or intracellular environment.
Assuntos
Amiloide , Pressão Osmótica , Fatores de Terminação de Peptídeos , Príons , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Amiloide/metabolismo , Amiloide/química , Príons/metabolismo , Príons/química , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Domínios Proteicos , Saccharomycetales/metabolismo , Condensados Biomoleculares/metabolismoRESUMO
Nucleic acids (NAs) are important components of living organisms responsible for the storage and transmission of hereditary information. They form complex structures that can self-assemble and bind to various biological molecules. DNAzymes are NAs capable of performing simple chemical reactions, which makes them potentially useful elements for creating DNA nanomachines with required functions. This review focuses on multicomponent DNA-based nanomachines, in particular on DNAzymes as their main functional elements, as well as on the structure of DNAzyme nanomachines and their application in the diagnostics and treatment of diseases. The article also discusses the advantages and disadvantages of DNAzyme-based nanomachines and prospects for their future applications. The review provides information about new technologies and the possibilities of using NAs in medicine.
Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/química , DNA Catalítico/genética , DNA Catalítico/metabolismo , DNA/metabolismoRESUMO
The term "biomolecular condensates" is used to describe membraneless compartments in eukaryotic cells, accumulating proteins and nucleic acids. Biomolecular condensates are formed as a result of liquid-liquid phase separation (LLPS). Often, they demonstrate properties of liquid-like droplets or gel-like aggregates; however, some of them may appear to have a more complex structure and high-order organization. Membraneless microcompartments are involved in diverse processes both in cytoplasm and in nucleus, among them ribosome biogenesis, regulation of gene expression, cell signaling, and stress response. Condensates properties and structure could be highly dynamic and are affected by various internal and external factors, e.g., concentration and interactions of components, solution temperature, pH, osmolarity, etc. In this review, we discuss variety of biomolecular condensates and their functions in live cells, describe their structure variants, highlight domain and primary sequence organization of the constituent proteins and nucleic acids. Finally, we describe current advances in methods that characterize structure, properties, morphology, and dynamics of biomolecular condensates in vitro and in vivo.
Assuntos
Fenômenos Bioquímicos , Ácidos Nucleicos , Condensados Biomoleculares , Proteínas , CitoplasmaRESUMO
The discovery of the CRISPR/Cas9 microbial adaptive immune system has revolutionized the field of genetics, by greatly enhancing the capacity for genome editing. CRISPR/Cas9-based editing starts with DNA breaks (or other lesions) predominantly at target sites and, unfortunately, at off-target genome sites. DNA repair systems differing in accuracy participate in establishing desired genetic changes but also introduce unwanted mutations, that may lead to hereditary, oncological, and other diseases. New approaches to alleviate the risks associated with genome editing include attenuating the off-target activity of editing complex through the use of modified forms of Cas9 nuclease and single guide RNA (sgRNA), improving delivery methods for sgRNA/Cas9 complex, and directing DNA lesions caused by the sgRNA/Cas9 to non-mutagenic repair pathways. Here, we have described CRISPR/Cas9 as a new powerful mutagenic factor, discussed its mutagenic properties, and reviewed factors influencing the mutagenic activity of CRISPR/Cas9.
Assuntos
Sistemas CRISPR-Cas , Mutagênicos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Mutagênese/genética , MutaçãoRESUMO
Conventional methods for the detection and differentiation of Bacillus cereus group species have drawbacks mostly due to the complexity of genetic discrimination between the Bacillus cereus species. Here, we describe a simple and straightforward assay based on the detected unamplified bacterial 16S rRNA by DNA nanomachine (DNM). The assay uses a universal fluorescent reporter and four all-DNA binding fragments, three of which are responsible for "opening up" the folded rRNA while the fourth stand is responsible for detecting single nucleotide variation (SNV) with high selectivity. Binding of the DNM to 16S rRNA results in the formation of the 10-23 deoxyribozyme catalytic core that cleaves the fluorescent reporter and produces a signal, which is amplified over time due to catalytic turnover. This developed biplex assay enables the detection of B. thuringiensis 16S rRNA at fluorescein and B. mycoides at Cy5 channels with a limit of detection of 30 × 103 and 35 × 103 CFU/mL, respectively, after 1.5 h with a hands-on time of ~10 min. The new assay may simplify the analysis of biological RNA samples and might be useful for environmental monitoring as a simple and inexpensive alternative to amplification-based nucleic acid analysis. The DNM proposed here may become an advantageous tool for detecting SNV in clinically significant DNA or RNA samples and can easily differentiate SNV under broadly variable experimental conditions and without prior amplification.
Assuntos
Bacillus , Bacillus/genética , Bacillus cereus/genética , RNA Ribossômico 16S/genética , DNA Ribossômico/genética , DNA BacterianoRESUMO
Ocular surface reconstruction is essential for treating corneal epithelial defects and vision recovery. Stem cell-based therapy demonstrates promising results but requires further research to elucidate stem cell survival, growth, and differentiation after transplantation in vivo. This study examined the corneal reconstruction promoted by EGFP-labeled limbal mesenchymal stem cells (L-MSCs-EGFP) and their fate after transplantation. EGFP labeling allowed us to evaluate the migration and survival rates of the transferred cells. L-MSCs-EGFP seeded onto decellularized human amniotic membrane (dHAM) were transplanted into rabbits with a modeled limbal stem cell deficiency. The localization and viability of the transplanted cells in animal tissue were analyzed using histology, immunohistochemistry, and confocal microscopy up to 3 months after transplantation. EGFP-labeled cells remained viable for the first 14 days after transplantation. By the 90th day, epithelialization of the rabbit corneas reached 90%, but the presence of viable labeled cells was not observed within the newly formed epithelium. Although labeled cells demonstrated low survivability in host tissue, the squamous corneal-like epithelium was partially restored by the 30th day after transplantation of the tissue-engineered graft. Overall, this study paves the way for further optimization of transplantation conditions and studying the mechanisms of corneal tissue restoration.
Assuntos
Epitélio Corneano , Limbo da Córnea , Células-Tronco Mesenquimais , Animais , Coelhos , Humanos , Epitélio Corneano/metabolismo , Células-Tronco do Limbo , Córnea , Transplante de Células-Tronco , Células CultivadasRESUMO
Numerous studies have demonstrated that people with type 2 diabetes mellitus (associated with IAPP peptide aggregation) show an increased incidence of Alzheimer's disease (associated with Aß aggregation), but the mechanism responsible for this correlation is presently unknown. Here, we applied a yeast-based model to study the interactions of IAPP with PrP (associated with TSEs) and with the Aß42 peptide. We demonstrated that fluorescently tagged IAPP forms detergent-resistant aggregates in yeast cells. Using the FRET approach, we showed that IAPP and Aß aggregates co-localize and physically interact in yeast cells. We also showed that this interaction is specific and that there is no interaction between IAPP and PrP in the yeast system. Our data confirmed a direct physical interaction between IAPP and Aß42 aggregates in a living cell. Based on these findings, we hypothesize that this interaction may play a crucial role in seeding Aß42 aggregation in T2DM patients, thereby promoting the development of AD.
Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Peptídeos beta-Amiloides , Saccharomyces cerevisiae , Polipeptídeo Amiloide das Ilhotas PancreáticasRESUMO
Amyloidoses is a group of diseases characterized by the accumulation of abnormal proteins (called amyloids) in different organs and tissues. For systemic amyloidoses, the disease is related to increased levels and/or abnormal synthesis of certain proteins in the organism due to pathological processes, e.g., monoclonal gammopathy and chronic inflammation in rheumatic arthritis. Treatment of amyloidoses is focused on reducing amyloidogenic protein production and inhibition of its aggregation. Therapeutic approaches critically depend on the type of amyloidosis, which underlines the importance of early differential diagnostics. In fact, the most accurate diagnostics of amyloidosis and its type requires analysis of a biopsy specimen from the disease-affected organ. However, absence of specific symptoms of amyloidosis and the invasive nature of biomaterial sampling causes the late diagnostics of these diseases, which leads to a delayed treatment, and significantly reduces its efficacy and patient survival. The establishment of noninvasive diagnostic methods and discovery of specific amyloidosis markers are essential for disease detection and identification of its type at earlier stages, which enables timely and targeted treatment. This review focuses on current approaches to the diagnostics of amyloidoses, primarily with renal involvement, and research perspectives in order to design new specific tests for early diagnosis.
Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Amiloidose/metabolismo , Amiloide/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/diagnóstico , Proteínas Amiloidogênicas , Materiais BiocompatíveisRESUMO
RAD51 is a central protein of homologous recombination and DNA repair processes that maintains genome stability and ensures the accurate repair of double-stranded breaks (DSBs). In this work, we assessed amyloid properties of RAD51 in vitro and in the bacterial curli-dependent amyloid generator (C-DAG) system. Resistance to ionic detergents, staining with amyloid-specific dyes, polarized microscopy, transmission electron microscopy (TEM), X-ray diffraction and other methods were used to evaluate the properties and structure of RAD51 aggregates. The purified human RAD51 protein formed detergent-resistant aggregates in vitro that had an unbranched cross-ß fibrillar structure, which is typical for amyloids, and were stained with amyloid-specific dyes. Congo-red-stained RAD51 aggregates demonstrated birefringence under polarized light. RAD51 fibrils produced sharp circular X-ray reflections at 4.7 Å and 10 Å, demonstrating that they had a cross-ß structure. Cytoplasmic aggregates of RAD51 were observed in cell cultures overexpressing RAD51. We demonstrated that a key protein that maintains genome stability, RAD51, has amyloid properties in vitro and in the C-DAG system and discussed the possible biological relevance of this observation.
Assuntos
Detergentes , Rad51 Recombinase , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Corantes , Instabilidade Genômica , Humanos , Agregados Proteicos , Rad51 Recombinase/químicaRESUMO
Fibrous cross-ß aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-ß (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes.
Assuntos
Amiloide/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Fragmentos de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/química , Agregados Proteicos , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/químicaRESUMO
Preeclampsia (PE) is a multisystem heterogeneous complication of pregnancy remaining a leading cause of maternal and perinatal morbidity and mortality over the world. PE has a large spectrum of clinical features and symptoms, which make diagnosis challenging. Despite a long period of studying, PE etiology is still unclear and there are no reliable rapid tests for early diagnosis of this disease. During the last decade, it was shown that proteins misfolding and aggregation are associated with PE. Several proteins, including amyloid beta peptide, transthyretin, alpha-1 antitrypsin, albumin, IgG k-free light chains, and ceruloplasmin are dysregulated in PE, resulting in toxic deposition of amyloid-like aggregates in the placenta and body fluids. It is also possible that aggregated proteins induce defective trophoblast invasion, placental ischemia, ER stress, and promote PE manifestation. The fact that protein aggregation is an emerging biomarker of PE provides an opportunity to develop new diagnostic approaches based on amyloids special features, such as Congo red (CR) staining and thioflavin T (ThT) enhanced fluorescence.
Assuntos
Amiloide/química , Biomarcadores/análise , Placenta/patologia , Pré-Eclâmpsia/diagnóstico , Agregação Patológica de Proteínas , Dobramento de Proteína , Benzotiazóis/química , Feminino , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Pré-Albumina/química , GravidezRESUMO
Preeclampsia is a disorder that can occur during pregnancy and is one of the leading causes of death among pregnant women. This disorder occurs after the 20th week of pregnancy and is characterized by arterial hypertension, proteinuria, fetoplacental, and multiple organ dysfunctions. Despite the long history of studying preeclampsia, its etiology and pathogenesis remain poorly understood, and therapy is symptomatic. One of the factors of the disorder is believed to be misfolded proteins that are prone to form amyloid aggregates. The CRD tests, utilizing the binding of the amyloid-specific dye Congo red to urine components, demonstrate high efficiency in diagnosing preeclampsia. However, these tests have also been found to be positive in other disorders with proteinuria, presumably associated with concomitant amyloidosis. To assess the limitations of the CRD tests, we examined urine congophilia and protein components mediating Congo red positivity in patients with proteinuria, including preeclampsia, amyloid and non-amyloid nephropathies. We stained the urine samples and calculated congophilia levels. We also assessed the contribution of large protein aggregates to congophilia values using ultracentrifugation and determined the molecular weights of congophilic urinary proteins using centrifugal concentrators. All proteinuric groups demonstrate positive results in the CRD tests and congophilia levels were more than two times higher compared with the control non-proteinuric groups (p <0.01). There was a strong correlation between urine protein excretion and congophilia in amyloid nephropathy (rs = 0.76), non-amyloid nephropathies (rs = 0.90), and preeclampsia (rs = 0.90). Removal of large aggregates from urine did not affect the congophilia levels. Separation of urine protein fractions revealed congophilic components in the range of 30-100 kDa, including monomeric serum albumin. Our results indicate limitations of CRD tests in preeclampsia diagnostics in women with renal disorders and underscore the need for further research on the mechanisms of Congo red binding with urine components.
Assuntos
Amiloidose , Hipertensão , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/metabolismo , Vermelho Congo , Amiloide/metabolismo , Proteínas Amiloidogênicas , Amiloidose/patologia , Proteinúria/diagnóstico , Proteinúria/urinaRESUMO
Cysteine cathepsins F and W are members of the papain-like cysteine protease family, which have distinct structural features and functional roles in various physiological and pathological processes. This review provides a comprehensive overview of the current understanding of the structure, biological functions, and pathological implications of cathepsins F and W. Beginning with an introduction to these proteases, we delve into their structural characteristics and elucidate their unique features that dictate their enzymatic activities and substrate specificity. We also explore the intricate involvement of cathepsins F and W in malignancies, highlighting their role as potential biomarkers and therapeutic targets in cancer progression. Furthermore, we discuss the emerging roles of these enzymes in immune response modulation and neurological disorders, shedding light on their implications in autoimmune and neurodegenerative diseases. Finally, we review the landscape of inhibitors targeting these proteases, highlighting their therapeutic potential and challenges in clinical translation. This review brings together the diverse facets of cysteine cathepsins F and W, providing insights into their roles in health and disease and guiding future investigations for therapeutic advances.
Assuntos
Catepsina F , Humanos , Animais , Catepsina F/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Cisteína Proteases/metabolismo , Cisteína Proteases/química , Catepsinas/metabolismo , Catepsinas/química , Especificidade por SubstratoRESUMO
Proteinopathy is characterized by the accumulation of aggregates of a specific protein in a target organ, tissue, or cell. The aggregation of the same protein can cause different pathologies as single protein can adopt various amyloidogenic, disease-specific conformations. The conformation governs the interaction of amyloid aggregates with other proteins that are prone to misfolding and, thus, determines disease-specific spectrum of concomitant pathologies. In this regard, a detailed description of amyloid protein conformation as well as spectrum of its interaction with other proteins become a key point for drafting of precise description of the disease. The majority of clinical cases of neuronal proteinopathies is caused by the aggregation of rather limited range of amyloidogenic proteins. Here, we provided the characterization of pathologies, related to the aggregation of amyloid ß peptide, tau protein, α-synuclein, TDP-43, and amylin, giving a short description of pathologies themselves, recent advances in elucidation of misfolded protein conformation, with emphasis on those protein aggregates extracted from biological samples, what is known about the interaction of this proteins, and the influence of this interaction on the progression of underlying disease and comorbidities.
RESUMO
Structural RNA is a challenging target for recognition by hybridization probes. This chapter addresses the recognition problem of RNA amplicons in samples obtained by multiplex nucleic acid sequence-based amplification (NASBA). The method describes the design of G-quadruplex binary (split) DNA peroxidase sensors that produces colorimetric signal upon recognition of NASBA amplicons.
Assuntos
Colorimetria , Replicação de Sequência Autossustentável , Colorimetria/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , RNA ViralRESUMO
Damage to the hyaline layer of the articular surface is an urgent problem for millions of people around the world. At present, a large number of experimental methods are being developed to address this problem, including the transplantation of a cell-engineered construct (CEC) composed of a biodegradable scaffold with a premixed cell culture into the damaged area of the articular surface. However, current methods for analyzing the effectiveness of such CECs have significant limitations. This study aimed to compare the SEM technique, classical histology, and cryosectioning for the analysis of CECs transplanted to hyaline cartilage.
RESUMO
Alzheimer's disease (AD) is the most common form of dementia that usually occurs among older people. AD results from neuronal degeneration that leads to the cognitive impairment and death. AD is incurable, typically develops over the course of many years and is accompanied by a loss of functional autonomy, making a patient completely dependent on family members and/or healthcare workers. Critical features of AD are pathological polymerization of Aß peptide and microtubule-associated protein tau, accompanied by alterations of their conformations and resulting in accumulation of cross-ß fibrils (amyloids) in human brains. AD apparently progresses asymptomatically for years or even decades before the appearance of symptoms. Therefore, development of the early AD diagnosis at a pre-symptomatic stage is essential for potential therapies. This review is focused on current and potential molecular tools (including non-invasive methods) that are based on detection of amyloidogenic proteins and can be applicable to early diagnosis of AD.Abbreviations: Aß - amyloid-ß peptide; AßO - amyloid-ß oligomers; AD - Alzheimer's disease; ADRDA - Alzheimer's Disease and Related Disorders Association; APH1 - anterior pharynx defective 1; APP - amyloid precursor protein; BACE1 - ß-site APP-cleaving enzyme 1; BBB - brain blood barrier; CJD - Creutzfeldt-Jakob disease; CRM - certified reference material; CSF - cerebrospinal fluid; ELISA - enzyme-linked immunosorbent assay; FGD - 18F-fluorodesoxyglucose (2-deoxy-2-[18F]fluoro-D-glucose); IP-MS - immunoprecipitation-mass spectrometry assay; MCI - mild cognitive impairment; MDS - multimer detection system; MRI - magnetic resonance imaging; NIA-AA - National Institute on Ageing and Alzheimer's Association; NINCDS - National Institute of Neurological and Communicative Disorders and Stroke; PEN2 - presenilin enhancer 2; PET - positron emission tomography; PiB - Pittsburgh Compound B; PiB-SUVR - PIB standardized uptake value ratio; PMCA - Protein Misfolding Cycling Amplification; PrP - Prion Protein; P-tau - hyperphosphorylated tau protein; RMP - reference measurement procedure; RT-QuIC - real-time quaking-induced conversion; SiMoA - single-molecule array; ThT - thioflavin T; TSEs - Transmissible Spongiform Encephslopathies; T-tau - total tau protein.
Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/diagnóstico , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Ácido Aspártico Endopeptidases , Biomarcadores , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tauRESUMO
In this article, we present several protocols that describe the steps from cloning and obtaining a large amount of pure plasmid DNA to generation of lentiviruses based on these constructs. The protocols have been worked out on human cell culture HEK293T but can be adapted for other cell cultures. This protocol was designed to be simple to execute and cheap since it requires only materials and consumables widely available in molecular laboratories, such as salts, alcohols, etc., and no complicated laboratory equipment. These protocols are highly effective and can be performed in any standard molecular biology laboratory.
RESUMO
Amyloids are highly ordered fibrous cross-ß protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer's disease (AD), Parkinson's disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed "functional amyloids," are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
RESUMO
Amyloids are fibrous cross-ß protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.