RESUMO
Hopf et al. reported the high-temperature 6π-electrocyclization of cis-hexa-1,3-diene-5-yne to benzene in 1969. Subsequent studies using this cyclization have been limited by its very high reaction barrier. Here, we show that the reaction barrier for two model systems, (E)-1,3,4,6-tetraphenyl-3-hexene-1,5-diyne (1a) and (E)-3,4-bis(4-iodophenyl)-1,6-diphenyl-3-hexene-1,5-diyne (1b), is decreased by nearly half on a Au(111) surface. We have used scanning tunneling microscopy (STM) and noncontact atomic force microscopy (nc-AFM) to monitor the Hopf cyclization of enediynes 1a,b on Au(111). Enediyne 1a undergoes two sequential, quantitative Hopf cyclizations, first to naphthalene derivative 2, and finally to chrysene 3. Density functional theory (DFT) calculations reveal that a gold atom from the Au(111) surface is involved in all steps of this reaction and that it is crucial to lowering the reaction barrier. Our findings have important implications for the synthesis of novel graphene nanoribbons. Ullmann-like coupling of enediyne 1b at 20 °C on Au(111), followed by a series of Hopf cyclizations and aromatization reactions at higher temperatures, produces nanoribbons 12 and 13. These results show for the first time that graphene nanoribbons can be synthesized on a Au(111) surface using the Hopf cyclization mechanism.
RESUMO
The synthesis of graphene nanoribbons (GNRs) that contain site-specifically substituted backbone heteroatoms is one of the essential goals that must be achieved in order to control the electronic properties of these next generation organic materials. We have exploited our recently reported solid-state topochemical polymerization/cyclization-aromatization strategy to convert the simple 1,4-bis(3-pyridyl)butadiynes 3a,b into the fjord-edge nitrogen-doped graphene nanoribbon structures 1a,b (fjord-edge N2[8]GNRs). Structural assignments are confirmed by CP/MAS 13C NMR, Raman, and XPS spectroscopy. The fjord-edge N2[8]GNRs 1a,b are promising precursors for the novel backbone nitrogen-substituted N2[8]AGNRs 2a,b. Geometry and band calculations on N2[8]AGNR 2c indicate that this class of nanoribbons should have unusual bonding topology and metallicity.
Assuntos
Grafite/química , Nanotubos de Carbono/química , Nitrogênio/química , Modelos Moleculares , Estrutura MolecularRESUMO
We demonstrate a highly efficient thermal conversion of four differently substituted polydiacetylenes (PDAs 1 and 2a-c) into virtually indistinguishable N = 8 armchair graphene nanoribbons ([8]AGNR). PDAs 1 and 2a-c are themselves easily accessed through photochemically initiated topochemical polymerization of diynes 3 and 4a-c in the crystal. The clean, quantitative transformation of PDAs 1 and 2a-c into [8]AGNR occurs via a series of Hopf pericyclic reactions, followed by aromatization reactions of the annulated polycyclic aromatic intermediates, as well as homolytic bond fragmentation of the edge functional groups upon heating up to 600 °C under an inert atmosphere. We characterize the different steps of both processes using complementary spectroscopic techniques (CP/MAS 13C NMR, Raman, FT-IR, and XPS) and high-resolution transmission electron microscopy (HRTEM). This novel approach to GNRs exploits the power of crystal engineering and solid-state reactions by targeting very large organic structures through programmed chemical transformations. It also affords the first reported [8]AGNR, which can now be synthesized on a large scale via two operationally simple and discrete solid-state processes.
RESUMO
The self-assembly of a series of dehydro[24]annulene derivatives into columnar stacks has been examined for its latent ability to form π-conjugated carbon-rich nanotubular structures through topochemical polymerizations. We have studied the parameters affecting self-assembly, including the nature of the substituent and crystallization conditions, using 10 different dehydro[24]annulene derivatives. In particular, hydrogen-bonding interactions through carbamate groups were found to be especially useful at directing the formation of nanotubular supramolecular assemblies. We have also evaluated the electronic coupling between neighboring dehydroannulene molecules within these supramolecular assemblies. Density functional calculations on the stacked supramolecular nanotube assemblies show that transfer integrals vary considerably between the three columnar assemblies, ranging from moderate to high (59-98 meV for the highest occupied molecular orbitals, 63-97 meV for the lowest unoccupied molecular orbitals), depending on the local molecular topology. In addition, the dehydro[24]annulene derivatives afforded distinct architectures in the crystal, including nanochannel arrays, sheets with solvent-filled pores, and lamellae. This work is an essential step toward a controlled formation of covalently linked carbon-rich nanostructures generated from molecular precursors with a latent diacetylene reactivity.
RESUMO
We have studied the self-assembly behavior of dehydro[24]annulene (D24A) derivatives 1, 2a-2d, and 3a-3c at the liquid/solid interface using scanning tunneling microscopy (STM). Both the relative placement and the nature of the four D24A substituents strongly influence the self-assembly pattern. Overall, the eight D24A derivatives examined in this study display seven types of 2D packing patterns. The D24A derivatives 1, 2a, and 3a have either two or four stearate groups and adopt face-on configurations of their macrocyclic cores with respect to the highly oriented pyrolytic graphite (HOPG) surface. Their 2D packing pattern is determined by the interchain spacings and number of stearate substituents. The D24A derivatives 2b-2d and 3b-3c bear hydrogen-bonding carbamate groups to further strengthen intermolecular interactions. Face-on patterns were also observed for most of these compounds, while an unstable edge-on self-assembly was observed in the case of 2b at room temperature. Stable edge-on self-assemblies of D24A derivatives were sought for this work as an important stepping stone to achieving the on-surface topochemical polymerization of these carbon-rich macrocycles into tubular π-conjugated nanowires. The overall factors determining the 2D packing patterns of D24As at the liquid/solid interface are discussed on the basis of theoretical simulations, providing useful guidelines for controlling the self-assembly pattern of future D24A macrocycles.
RESUMO
The thermal reaction of the endohedral metallofullerene La2 @D2 (10611)-C72 , which contains two pentalene units at opposite ends of the cage, with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine proceeded selectively to afford only two bisfulleroid isomers. The molecular structure of one isomer was determined using single-crystal X-ray crystallography. The results suggest that the [4+2] cycloaddition was initiated in a highly regioselective manner at the C-C bond connecting two pentagon rings of C72 . Subsequent intramolecular electrocyclization followed by cycloreversion resulted in the formation of an open-cage derivative having three seven-membered ring orifices on the cage and a significantly elongated cage geometry. The reduction potentials of the open-cage derivatives were similar to those of La2 @D2 -C72 whereas the oxidation potentials were shifted more negative than those of La2 @D2 -C72 . These results point out that further oxidation could occur easily in the derivatives.
RESUMO
Vertically oriented nanostructures bring unparalleled high surface area, light trapping capability, and high device density to electronic, optoelectronic, and energy storage devices. However, general methods to prepare such structures remain sparse and are typically based on anodized metal oxide templates. Here, we demonstrate a new approach: using vertically oriented tetraaniline nanopillar arrays as templates for creating nanopillars and nanotubes of other materials. The tetraaniline templates are scalable and easy to prepare. Vertical arrays of a variety of materials can be created by directly coating them onto the tetraaniline nanopillars via vapor, solution, or electrodeposition. Since the tetraaniline template is encased within the target material, it does not require post-deposition removal, thus enabling vertical structure formation of sensitive materials. Conversely, removal of the encased tetraaniline template provides vertically oriented nanotube arrays in a lost-wax-type operation. The resulting vertical structures exhibit a high degree of orientation and height uniformity, with tunable feature size, spacing, and array density. Furthermore, the deposition location and shape of the vertical arrays can be patterned at a resolution of 3 µm. Collectively, these attributes should broaden the material repertoire for vertically oriented structures, and lead to advancements in energy storage, electronics, and optoelectronics.
RESUMO
The reaction of tetrazine 1 with Sc(3)C(2)@C(80) exclusively affords the open-cage derivative 2 instead of the expected C(2)-inserted derivative 3 bearing a four-membered ring, as previously obtained for C(60). The structure of 2 has been firmly established by NMR spectroscopy and theoretical calculations. EPR spectroscopy shows that a single Sc atom of the Sc(3)C(2) cluster gets located within the bulge created by the bridging addend, which is a first step toward release of the internal metal atoms.
Assuntos
Carbono/química , Escândio/química , Modelos Moleculares , Estrutura Molecular , Tetrazóis/químicaRESUMO
The relationship between the size of the substituents of aryl groups in a series of fifteen 6,9,12,15,18-pentaaryl-1-hydro[60]fullerenes and the solid-state structures and packing motifs of these compounds has been analyzed. Pentaarylfullerenes have a characteristic "badminton shuttlecock" shape that causes several derivatives to crystallize into columnar stacks. However, many pentaarylfullerenes form non-stacked structures with, for example, dimeric, layered, diamondoid, or feather-in-cavity relationships between molecules. Computational modeling gave a qualitative estimate of the best shape match between the ball and socket surfaces of each pentaarylfullerene. The best match was for pentaarylfullerenes with large, spherically shaped para-substituents on the aryl groups. The series of pentaarylfullerenes was characterized by single-crystal X-ray diffraction. A total of 34 crystal structures were obtained as various solvates and were categorized by their packing motifs.
RESUMO
Gold(I), silver(I), and copper(I) phosphine complexes of 6,9,12,15,18-pentaaryl[60]fullerides 1a and 1b, namely, [(4-MeC(6)H(4))(5)C(60)]Au(PPh(3)) (2a), [(4-t-BuC(6)H(4))(5)C(60)]Au(PPh(3)) (2b), [(4-MeC(6)H(4))(5)C(60)]Ag(PCy(3)) (3a), [(4-t-BuC(6)H(4))(5)C(60)]Ag(PPh(3)) (3b), [(4-t-BuC(6)H(4))(5)C(60)]Ag(PCy(3)) (3c), [(4-MeC(6)H(4))(5)C(60)]Cu(PPh(3)) (4a), and [(4-t-BuC(6)H(4))(5)C(60)]Cu(PPh(3)) (4b), have been synthesized and characterized spectroscopically. All complexes except for 3c were also characterized by single-crystal X-ray diffraction. Several coordination modes between the cyclopentadienyl ring embedded in the fullerene and the metal centers are observed, ranging from η(1) with a slight distortion toward η(3) in the case of gold(I), to η(2)/η(3) for silver(I), and η(5) for copper(I). Silver complexes 3a and 3b are rare examples of crystallographically characterized Ag(I) cyclopentadienyls whose preparation was possible thanks to the steric shielding provided by fullerides 1a and 1b, which stabilizes these complexes. Silver complexes 3a and 3b both display unexpected coordination of the cyclopentadienyl portion of the fulleride anion with Ag(I). DFT calculations on the model systems (H(5)C(60))M(PH(3)) and CpMPH(3) (M = Au, Ag, or Cu) were carried out to probe the geometries and electronic structures of these metal complexes.
RESUMO
Two gold(I) complexes, (Ph(3)P)Au[C(60)(4-MeC(6)H(4))(5)] (1) and (Ph(3)P)Au[C(60)(4-t-BuC(6)H(4))(5)] (2), were prepared in excellent yield and characterized by single-crystal X-ray diffraction. Complex 1, grown from two solvent systems, has different coordination modes of the fullerene-embedded Cp ring to the (PPh(3))Au fragment. For 1.(ODCB)(2), the cyclopentadienyl ring coordinates to the (Ph(3)P)Au fragment in an eta(1) fashion distorted toward eta(3) geometry, while in 1.(CHCl(3))(2)(CS(2)), crystal packing forces produce enough distortion to give near eta(2) coordination.
Assuntos
Fulerenos/química , Ouro/química , Compostos Organoáuricos/química , Compostos Organoáuricos/síntese química , Compostos Organofosforados/química , Cristalografia por Raios X , Ligantes , Modelos MolecularesRESUMO
The fullerene adducts 1a and 1b, whose molecular shapes either promote or hinder the formation of 1-D stacks, have been examined for their potential to form 1-D wire-like domains in bulk-heterojunction organic solar cells. The photovoltaic efficiency of solar cells based on blends of the stacking fullerene 1a with regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) is greatly enhanced compared to nonstacking model fullerene 1b.
RESUMO
[Structure: see text] The regioselective functionalization of C60 with a trans-4,trans-4,trans-4 trisaddition pattern is not feasible directly. We have found an indirect approach taking advantage of the modified electronic reactivity of cis-1 bisadducts. The cis-1 addition pattern electronically activates three trans-4 C=C bonds on the opposite hemisphere of C60, allowing further highly regioselective additions at these positions. Thermal removal of the cis-1 blocking unit results in a trans-4,trans-4,trans-4 trisadduct with C3v symmetry.
Assuntos
Fulerenos/química , Cristalografia por Raios X , Elétrons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria UltravioletaRESUMO
Complete saturation of a single six-membered ring on fullerene C60 has been achieved. The critical step in this first synthesis of a fully characterized 1,2,3,4,5,6-hexaadduct consisted of a remarkable double 5-exo-trig addition of alkoxyl radicals promoted by lead tetraacetate. Two possible opening pathways ([2 + 2 + 2] retrocycloadditions) for the newly synthesized compound were explored using quantum mechanical calculations. We found that the oxa bridges in the hexaadduct prevent ring opening through the retro[2 + 2 + 2] mechanism due to the high activation barrier and endothermicity of the reaction.
RESUMO
We have synthesized a conjugated amphiphilic polyelectrolyte, a poly(phenylene ethynylene) (PPE), and the structurally analogous neutral polymer. The solution-phase aggregation of the uncharged PPE can be reversibly controlled by varying the solvent polarity and concentration, while the charged polymer appears to self-assemble at any concentration in compatible solvents. These conclusions are based on a combination of absorption and photoluminescence spectroscopy and dynamic light scattering. Photoinduced absorption spectroscopy was also employed to investigate interchain electronic communication and the photoinduced production of free charge carriers. The uncharged PPE had a relatively high polaron yield, indicating pi-stacking of adjacent PPE chains and efficient exciton splitting, while the charged polymer did not produce polarons, indicating that the polymers are not pi-stacked despite their tendency to form aggregates. This is most likely due to the presence of the cationic trimethylammonium side chains which force neighboring polymer chains too far apart to achieve effective pi-orbital overlap. Polarons were observed in both polymers after chemical doping with iodine. The ability to control aggregation and interchain electronic communication could be a useful tool in designing nanostructured electronic materials.
RESUMO
Poly(fluorene-alt-thiophene) (PFT) is a conjugated polyelectrolyte that self-assembles into rod-like micelles in water, with the conjugated polymer backbone running along the length of the micelle. At modest concentrations (â¼10 mg/mL in aqueous solutions), PFT forms hydrogels, and this work focuses on understanding the structure and intermolecular interactions in those gel networks. The network structure can be directly visualized using cryo electron microscopy. Oscillatory rheology studies further tell us about connectivity within the gel network, and the data are consistent with a picture where polymer chains bridge between micelles to hold the network together. Addition of tetrahydrofuran (THF) to the gels breaks those connections, but once the THF is removed, the gel becomes stronger than it was before, presumably due to the creation of a more interconnected nanoscale architecture. Small polymer oligomers can also passivate the bridging polymer chains, breaking connections between micelles and dramatically weakening the hydrogel network. Fits to solution-phase small-angle X-ray scattering data using a Dammin bead model support the hypothesis of a bridging connection between PFT micelles, even in dilute aqueous solutions. Finally, time-resolved microwave conductivity measurements on dried samples show an increase in carrier mobility after THF annealing of the PFT gel, likely due to increased connectivity within the polymer network.
Assuntos
Hidrogéis/química , Polieletrólitos/química , Microscopia Crioeletrônica , Eletricidade , Furanos/química , Cinética , Micelas , Micro-Ondas , Modelos Químicos , Reologia , Espalhamento a Baixo Ângulo , Soluções/química , Substâncias Viscoelásticas/química , Água/química , Difração de Raios XRESUMO
[reaction: see text] The unusually stable perchloro-2,5,8-triazaphenalenyl radical 1 and its twisted dechlorinated dimer 2 were synthesized and characterized by ESR spectroscopy and X-ray crystallography. The X-ray structure of dimer 2 shows that the double bond connecting the two triazaphenalene systems is strongly twisted. Dimer 2 has a dramatic color shift from the solid state to solution, which may be due to a change of the twisting angle between both states.
Assuntos
Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/síntese química , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/síntese química , Cristalografia por Raios X , Estrutura MolecularRESUMO
Vertically oriented structures of single crystalline conductors and semiconductors are of great technological importance due to their directional charge carrier transport, high device density, and interesting optical properties. However, creating such architectures for organic electronic materials remains challenging. Here, we report a facile, controllable route for producing oriented vertical arrays of single crystalline conjugated molecules using graphene as the guiding substrate. The arrays exhibit uniform morphological and crystallographic orientations. Using an oligoaniline as an example, we demonstrate this method to be highly versatile in controlling the nucleation densities, crystal sizes, and orientations. Charge carriers are shown to travel most efficiently along the vertical interfacial stacking direction with a conductivity of 12.3 S/cm in individual crystals, the highest reported to date for an aniline oligomer. These crystal arrays can be readily patterned and their current harnessed collectively over large areas, illustrating the promise for both micro- and macroscopic device applications.
RESUMO
The efficiency of biological photosynthesis results from the exquisite organization of photoactive elements that promote rapid movement of charge carriers out of a critical recombination range. If synthetic organic photovoltaic materials could mimic this assembly, charge separation and collection could be markedly enhanced. We show that micelle-forming cationic semiconducting polymers can coassemble in water with cationic fullerene derivatives to create photoinduced electron-transfer cascades that lead to exceptionally long-lived polarons. The stability of the polarons depends on the organization of the polymer-fullerene assembly. Properly designed assemblies can produce separated polaronic charges that are stable for days or weeks in aqueous solution.