RESUMO
Zika virus (ZIKV), a mosquito-borne flavivirus, causes devastating congenital birth defects. We isolated a human monoclonal antibody (mAb), ZKA190, that potently cross-neutralizes multi-lineage ZIKV strains. ZKA190 is highly effective in vivo in preventing morbidity and mortality of ZIKV-infected mice. NMR and cryo-electron microscopy show its binding to an exposed epitope on DIII of the E protein. ZKA190 Fab binds all 180 E protein copies, altering the virus quaternary arrangement and surface curvature. However, ZIKV escape mutants emerged in vitro and in vivo in the presence of ZKA190, as well as of other neutralizing mAbs. To counter this problem, we developed a bispecific antibody (FIT-1) comprising ZKA190 and a second mAb specific for DII of E protein. In addition to retaining high in vitro and in vivo potencies, FIT-1 robustly prevented viral escape, warranting its development as a ZIKV immunotherapy.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Infecção por Zika virus/terapia , Zika virus/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/química , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/química , Microscopia Crioeletrônica , Epitopos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Zika virus/imunologiaRESUMO
To assess the associations between the adherence to a composite score comprised of 6 healthy lifestyle behaviors and its individual components with several cardiometabolic risk factors in Spanish preschool children. Cross-sectional analyses were conducted in 938 participants included in the CORALS cohort aged 3-6 years. Six recognized healthy lifestyle behaviors (breastfeeding, sleep duration, physical activity, screentime, adherence to the Mediterranean diet, and eating speed) were assessed in a composite score. Multiple linear and logistic regression models were fitted to assess the associations with cardiometabolic risk factors (weight status, waist circumference, fat mass index, blood pressure, fasting plasma glucose, and lipid profile). In the adjusted multiple linear and logistic regression models, compared with the reference category of adherence to the healthy lifestyle behavior composite score, those participants in the category of the highest adherence showed significant decreased prevalence risk of overweight or obesity [OR (95% CI), 0.4 (0.2, 0.6)] as well as significant lower waist circumference, fat mass index (FMI), systolic blood pressure and fasting plasma glucose concentration [ß (95% CI), - 1.4 cm (- 2.5, - 0.4); - 0.3 kg/m2 (- 0.5, - 0.1); and - 3.0 mmHg (- 5.2, - 0.9); - 1.9 mg/dL (- 3.5, - 0.4), respectively]. Slow eating speed was individually associated with most of the cardiometabolic risk factors. Conclusions: Higher adherence to the healthy lifestyle behavior composite score was associated with lower waist circumference, FMI, other cardiometabolic risk factors, and risk of overweight or obesity in Spanish preschool children. Further studies are required to confirm these associations. What is Known: ⢠Lifestyle is a well-recognized etiologic factor of obesity and its comorbidities. ⢠Certain healthy behaviors such as adhering to a healthy diet, increasing physical activity, and decreasing screentime are strategies for prevention and treatment of childhood obesity. What is New: ⢠Higher adherence to the healthy lifestyle behavior composite score to 6 healthy behaviors (breastfeeding, sleep duration, physical activity, screentime, eating speed, and adherence to the Mediterranean diet) was associated with decreased adiposity, including prevalence risk of overweight or obesity, and cardiometabolic risk in preschool children. ⢠Slow eating and greater adherence to the Mediterranean diet were mainly associated to lower fasting plasma and serum triglycerides concentration, respectively.
Assuntos
Obesidade Infantil , Criança , Pré-Escolar , Humanos , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , Obesidade Infantil/prevenção & controle , Sobrepeso/epidemiologia , Fatores de Risco Cardiometabólico , Glicemia/análise , Estudos Transversais , Índice de Massa Corporal , Estilo de Vida Saudável , Fatores de RiscoRESUMO
OBJECTIVE: To assess the associations between eating speed, adiposity, cardiometabolic risk factors, and diet quality in a cohort of Spanish preschool-children. STUDY DESIGN: A cross-sectional study in 1371 preschool age children (49% girls; mean age, 4.8 ± 1.0 years) from the Childhood Obesity Risk Assessment Longitudinal Study (CORALS) cohort was conducted. After exclusions, 956 participants were included in the analyses. The eating speed was estimated by summing the total minutes used in each of the 3 main meals and then categorized into slow, moderate, or fast. Multiple linear and logistic regression models were fitted to assess the ß-coefficient, or OR and 95% CI, between eating speed and body mass index, waist circumference, fat mass index (FMI), blood pressure, fasting plasma glucose, and lipid profile. RESULTS: Compared with participants in the slow-eating category, those in the fast-eating category had a higher prevalence risk of overweight/obesity (OR, 2.9; 95% CI, 1.8-4.4; P < .01); larger waist circumference (ß, 2.6 cm; 95% CI, 1.5-3.8 cm); and greater FMI (ß, 0.3 kg/m2; 95% CI, 0.1-0.5 kg/m2), systolic blood pressure (ß, 2.8 mmHg; 95% CI, 0.6-4.9 mmHg), and fasting plasma glucose levels (ß, 2.7 mg/dL, 95% CI, 1.2-4.2 mg/dL) but lower adherence to the Mediterranean diet (ß, -0.5 points; 95% CI, -0.9 to -0.1 points). CONCLUSIONS: Eating fast is associated with higher adiposity, certain cardiometabolic risk factors, and lower adherence to a Mediterranean diet. Further long-term and interventional studies are warranted to confirm these associations.
Assuntos
Doenças Cardiovasculares , Dieta Mediterrânea , Obesidade Infantil , Criança , Humanos , Adiposidade/fisiologia , Fatores de Risco Cardiometabólico , Glicemia/análise , Estudos Longitudinais , Estudos Transversais , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , Fatores de Risco , Circunferência da Cintura , Índice de Massa Corporal , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologiaRESUMO
The detection of emerging contaminants in bodies of water has steadily increased in recent years, becoming a severe problem threatening human and ecosystem health. Developing new materials with adsorption properties to remove these pollutants represents an important step toward a potential solution. In this paper, a polybutylene adipate terephthalate (PBAT) nanofibrous membrane incorporating clinoptilolite zeolite was developed and its excellent performance in removing tetracycline (TC) and methylene blue (MB) from water was demonstrated. The composite membrane was prepared in two steps: firstly, a homogeneous dispersion of clinoptilolite (1 wt% respect to polymer) in a PBAT solution (12.6 wt%) was electrospun; secondly, the electrospun membrane was subjected to an acid treatment that improved its wettability through the protonation of the surface silanol groups of clinoptilolite. The resulting membrane was hydrophilic and showed higher adsorption for TC (800 mg/g) and MB (100 mg/g), using a low dose (90 mg/L) powdered zeolite. The maximum removal capacity was obtained at neutral pH, being the cation exchange reaction the main adsorption mechanism. Pseudo-second-order kinetics and Henry's law agree well with the proposed chemisorption and the high affinity of TC and MB for the adsorbent. The material can be reused after the removal process without generating additional contamination, although losing some effectivity.
Assuntos
Poluentes Químicos da Água , Zeolitas , Humanos , Zeolitas/química , Azul de Metileno/química , Adsorção , Ecossistema , Poluentes Químicos da Água/química , Antibacterianos , Tetraciclina , Água/química , Concentração de Íons de Hidrogênio , Cinética , AdipatosRESUMO
PURPOSE: Risk stratification of patients with type 2 diabetes mellitus (T2D) remains suboptimal. We hypothesized that myocardial perfusion entropy (MPE) quantified from SPECT myocardial perfusion images may provide incremental prognostic value in T2D patients independently from myocardial ischemia. METHODS: T2D patients with very high and high cardiovascular risk were prospectively included (n = 166, 65 ± 12 years). Stress perfusion defect was quantified by visual evaluation of SPECT MPI. SPECT MPI was also used for the quantification of rest and stress MPE. The primary end point was major adverse cardiac events (MACEs) defined as cardiac death, myocardial infarction (MI), and myocardial revascularization > 3 months after SPECT. RESULTS: Forty-four MACEs were observed during a 4.6-year median follow-up. Significant differences in stress MPE were observed between patients with and without MACEs (4.19 ± 0.46 vs. 3.93 ± 0.40; P ≤ .01). By Kaplan-Meier analysis, the risk of MACEs was significantly higher in patients with higher stress MPE (log-rank P ≤ 01). Stress MPE and stress perfusion defect (SSS ≥ 4) were significantly associated with the risk of MACEs (hazard ratio 2.77 and 2.06, respectively, P < .05 for both) after adjustment for clinical and imaging risk predictors as identified from preliminary univariate analysis. MPE demonstrated incremental prognostic value over clinical risk factors, stress test EKG and SSS as evidenced by nested models showing improved Akaike information criterion (AIC), reclassification (global continuous net reclassification improvement [NRI]: 63), global integrated discrimination improvement (IDI: 6%), and discrimination (change in c-statistic: 0.66 vs 0.74). CONCLUSIONS: Stress MPE provided independent and incremental prognostic information for the prediction of MACEs in diabetic patients. TRIAL REGISTRATION NUMBER: NCT02316054 (12/12/2014).
Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Imagem de Perfusão do Miocárdio , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Entropia , Teste de Esforço , Humanos , Perfusão , Prognóstico , Medição de Risco , Fatores de Risco , Tomografia Computadorizada de Emissão de Fóton ÚnicoRESUMO
Pantothenate Kinase-associated Neurodegeneration (PKAN) belongs to a wide spectrum of diseases characterized by brain iron accumulation and extrapyramidal motor signs. PKAN is caused by mutations in PANK2, encoding the mitochondrial pantothenate kinase 2, which is the first enzyme of the biosynthesis of Coenzyme A. We established and characterized glutamatergic neurons starting from previously developed PKAN Induced Pluripotent Stem Cells (iPSCs). Results obtained by inductively coupled plasma mass spectrometry indicated a higher amount of total cellular iron in PKAN glutamatergic neurons with respect to controls. PKAN glutamatergic neurons, analyzed by electron microscopy, exhibited electron dense aggregates in mitochondria that were identified as granules containing calcium phosphate. Calcium homeostasis resulted compromised in neurons, as verified by monitoring the activity of calcium-dependent enzyme calpain1, calcium imaging and voltage dependent calcium currents. Notably, the presence of calcification in the internal globus pallidus was confirmed in seven out of 15 genetically defined PKAN patients for whom brain CT scan was available. Moreover, we observed a higher prevalence of brain calcification in females. Our data prove that high amount of iron coexists with an impairment of cytosolic calcium in PKAN glutamatergic neurons, indicating both, iron and calcium dys-homeostasis, as actors in pathogenesis of the disease.
Assuntos
Cálcio/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cálcio/efeitos adversos , Calpaína/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Citoplasma/fisiologia , Feminino , Homeostase , Humanos , Células-Tronco Pluripotentes Induzidas , Lactente , Ferro/efeitos adversos , Imageamento por Ressonância Magnética , Masculino , Espectrometria de Massas , Microscopia Eletrônica , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Fosfotransferases (Aceptor do Grupo Álcool) , Tomografia Computadorizada por Raios X , Adulto JovemRESUMO
See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article.Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of voltage-dependent Na+ channels in homozygous PRRT2 knockout human and mouse neurons and that, in addition to the reported synaptic functions, PRRT2 is an important negative modulator of Nav1.2 and Nav1.6 channels. Given the predominant paroxysmal character of PRRT2-linked diseases, the disturbance in cellular excitability by lack of negative modulation of Na+ channels appears as the key pathogenetic mechanism.
Assuntos
Regulação da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Animais , Segmento Inicial do Axônio/fisiologia , Diferenciação Celular , Córtex Cerebral/citologia , Consanguinidade , Fibroblastos/patologia , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Neurônios/citologia , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , IrmãosRESUMO
Addressing the global problem of polluted water requires sustainable, efficient, and scalable remediation solutions, such as electrospun polyvinyl alcohol (PVA) membranes incorporating specific nanoadsorbents. The retention of contaminants depends on membrane swelling, morphology, and the adsorbent within the nanofiber. This study investigated the effect of relative humidity (RH) within the electrospinning chamber on the morphology of the resulting mats and how this affected the flow dynamics depending on whether or not the permeating liquid induced swelling in the membranes. An insolubilized PVA membrane was used as a hydrophilic filter model and a PVA membrane filled with iron oxide nanoparticles (IONPs) as a composite model (PVA + IONPs). The presence of IONPs increases the nanofiber diameter, which decreases when prepared under intermediate RH (IRH). Consequently, the nanofiber configuration, which is critical for filtration tortuosity, is influenced by RH. The initial swelling results in over 60% greater water flux through PVA + IONPs compared to PVA at an equivalent RH. This characterization helps to optimize membrane applications, highlighting that PVA + IONPs exhibit lower permeability values at IRH, indicating improved contaminant retention capabilities.
RESUMO
The efficiency in the capabilities to store and release antioxidants depends on the film morphology and its manufacturing process, as well as on the type and methodology used to obtain the polyphenol extracts. Here, hydroalcoholic extracts of black tea polyphenols (BT) were obtained and dropped onto different polyvinyl alcohol (PVA) aqueous solutions (water or BT aqueous extract with and without citric acid, CA) to obtain three unusual PVA electrospun mats containing polyphenol nanoparticles within their nanofibers. It was shown that the mat obtained through the nanoparticles precipitated in BT aqueous extract PVA solution presented the highest total polyphenol content and antioxidant activity, and that the addition of CA as an esterifier or PVA crosslinker interfered with the polyphenols. The release kinetics in different food simulants (hydrophilic, lipophilic and acidic) were fitted using Fick's diffusion law and Peppas' and Weibull's models, showing that polymer chain relaxation is the main mechanism in all food simulants except for the acidic, which presented an abrupt release by Fick's diffusion mechanism of about 60% before being controlled. This research provides a strategy for the development of promising controlled-release materials for active food packaging, mainly for hydrophilic and acidic food products.
RESUMO
BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population. METHODS: We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality. RESULTS: Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses. LIMITATIONS: We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease. CONCLUSIONS: Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.
Assuntos
Haploinsuficiência , Células-Tronco Neurais , Camundongos , Animais , Humanos , Neurônios/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Cromatina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismoRESUMO
ß Amyloid, present in senile plaques, has been related largely to neuronal loss in the brain of patients with Alzheimer's disease. However, how neurons respond to ß amyloid insults is still poorly understood. Here we show that ß amyloid increases somatostatin and cortistatin gene expression mainly through an increase in histone 3 lysine 4 methylation (H3K4me3), a modification associated with transcriptional activation. Somatostatin and cortistatin partially decreased ß amyloid toxicity in primary cortical neurons in culture. Thus we suggest that neurons respond to ß amyloid insults by releasing somatostatin and cortistatin, which will act as a protective agent against ß amyloid toxicity. Our results suggest a relevant function for both neuropeptides against ß amyloid toxicity, providing new insights into Alzheimer's disease.
Assuntos
Peptídeos beta-Amiloides/farmacologia , Epigenômica , Regulação da Expressão Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Somatostatina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Interações Medicamentosas , Embrião de Mamíferos , Quinase 3 da Glicogênio Sintase/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Fosforilação/efeitos dos fármacos , Serina/metabolismo , Somatostatina/genética , Somatostatina/farmacologia , Tubulina (Proteína)/metabolismoRESUMO
Neurodegeneration associated with defective pantothenate kinase-2 (PKAN) is an early-onset monogenic autosomal-recessive disorder. The hallmark of the disease is the massive accumulation of iron in the globus pallidus brain region of patients. PKAN is caused by mutations in the PANK2 gene encoding the mitochondrial enzyme pantothenate kinase-2, whose function is to catalyze the first reaction of the CoA biosynthetic pathway. To date, the way in which this alteration leads to brain iron accumulation has not been elucidated. Starting from previously obtained hiPS clones, we set up a differentiation protocol able to generate inhibitory neurons. We obtained striatal-like medium spiny neurons composed of approximately 70-80% GABAergic neurons and 10-20% glial cells. Within this mixed population, we detected iron deposition in both PKAN cell types, however, the viability of PKAN GABAergic neurons was strongly affected. CoA treatment was able to reduce cell death and, notably, iron overload. Further differentiation of hiPS clones in a pure population of astrocytes showed particularly evident iron accumulation, with approximately 50% of cells positive for Perls staining. The analysis of these PKAN astrocytes indicated alterations in iron metabolism, mitochondrial morphology, respiratory activity, and oxidative status. Moreover, PKAN astrocytes showed signs of ferroptosis and were prone to developing a stellate phenotype, thus gaining neurotoxic features. This characteristic was confirmed in iPS-derived astrocyte and glutamatergic neuron cocultures, in which PKAN glutamatergic neurons were less viable in the presence of PKAN astrocytes. This newly generated astrocyte model is the first in vitro disease model recapitulating the human phenotype and can be exploited to deeply clarify the pathogenetic mechanisms underlying the disease.
Assuntos
Astrócitos , Neurodegeneração Associada a Pantotenato-Quinase , Astrócitos/metabolismo , Coenzima A/genética , Coenzima A/metabolismo , Humanos , Ferro/metabolismo , Neurônios/metabolismo , Neurodegeneração Associada a Pantotenato-Quinase/genética , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismoRESUMO
There is solid evidence indicating that hyperphosphorylated tau protein, the main component of intracellular neurofibrillary tangles present in the brain of Alzheimer disease patients, plays a key role in progression of this disease. However, it has been recently reported that extracellular unmodified tau protein may also induce a neurotoxic effect on hippocampal neurons by activation of M1 and M3 muscarinic receptors. In the present work we show an essential component that links both effects, which is tissue-nonspecific alkaline phosphatase (TNAP). This enzyme is abundant in the central nervous system and is mainly required to keep control of extracellular levels of phosphorylated compounds. TNAP dephosphorylates the hyperphosphorylated tau protein once it is released upon neuronal death. Only the dephosphorylated tau protein behaves as an agonist of muscarinic M1 and M3 receptors, provoking a robust and sustained intracellular calcium increase finally triggering neuronal death. Interestingly, activation of muscarinic receptors by dephosphorylated tau increases the expression of TNAP in SH-SY5Y neuroblastoma cells. An increase in TNAP activity together with increases in protein and transcript levels were detected in Alzheimer disease patients when they were compared with healthy controls.
Assuntos
Fosfatase Alcalina/metabolismo , Proteínas tau/toxicidade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Encéfalo/enzimologia , Cálcio/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Proteínas tau/farmacologiaRESUMO
Tau is a neuronal microtubule-associated protein implicated in microtubules stabilization, axonal establishment and elongation during neuronal morphogenesis. Because of its elevated expression in neocortical regions and hippocampus, tau might play a role in sculpting collective neural responses underlying slow and fast brain oscillations and/or long-range synchronization patterns between hippocampus and neocortex. To test this hypothesis, local field potentials were recorded in tau-deficient (tau(-/-) ) and wild-type mice from different neocortical regions and from the hippocampus during spontaneous motor exploratory behavior. We found that tau(-/-) mice showed hippocampal theta slowing and reduced levels of gamma long-range synchronization involving the frontal cortex. We hypothesize that the lack of normal phosphorylated tau during early stages of development might influence the maturation of parvalbumin interneurons affecting the spatiotemporal structure of long-range gamma synchronization. Also, the proper functioning of gap-junction channels might be compromised by the absence of tau in hippocampal networks. Altogether, these results provide novel insights into the functional role of tau protein in the formation of collective neural responses and emergence of neocortical-hippocampal interactions in the mammalian brain.
Assuntos
Hipocampo/fisiologia , Neocórtex/fisiologia , Ritmo Teta/fisiologia , Proteínas tau , Animais , Eletrofisiologia , Potencial Evocado Motor , Comportamento Exploratório , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Parvalbuminas/metabolismo , Proteínas tau/deficiência , Proteínas tau/imunologia , Proteínas tau/metabolismoRESUMO
The investigation of genetic forms of juvenile neurodegeneration could shed light on the causative mechanisms of neuronal loss. Schinzel-Giedion syndrome (SGS) is a fatal developmental syndrome caused by mutations in the SETBP1 gene, inducing the accumulation of its protein product. SGS features multi-organ involvement with severe intellectual and physical deficits due, at least in part, to early neurodegeneration. Here we introduce a human SGS model that displays disease-relevant phenotypes. We show that SGS neural progenitors exhibit aberrant proliferation, deregulation of oncogenes and suppressors, unresolved DNA damage, and resistance to apoptosis. Mechanistically, we demonstrate that high SETBP1 levels inhibit P53 function through the stabilization of SET, which in turn hinders P53 acetylation. We find that the inheritance of unresolved DNA damage in SGS neurons triggers the neurodegenerative process that can be alleviated either by PARP-1 inhibition or by NAD + supplementation. These results implicate that neuronal death in SGS originates from developmental alterations mainly in safeguarding cell identity and homeostasis.
Assuntos
Anormalidades Múltiplas/patologia , Proteínas de Transporte/metabolismo , Anormalidades Craniofaciais/patologia , Dano ao DNA , Deformidades Congênitas da Mão/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Deficiência Intelectual/patologia , Mutação , Unhas Malformadas/patologia , Células-Tronco Neurais/patologia , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Unhas Malformadas/genética , Unhas Malformadas/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/genética , OrganoidesRESUMO
OBJECTIVE: The effects of the Covid-19 health emergency have demonstrated the high vulnerability of people residing in medium and long-stay centers, with high mortality rates. Little data is available about contingency protocols to minimize the spread of the virus in these centers. The goal of this study was to describe the clinical and epidemiological features of patients affected by SARS-CoV-2 and the preventive and management measures adopted at the National Hospital for Paraplegics (Toledo, Castilla-La Mancha, Spain) to minimize the risk of transmission of Covid-19. METHODS: A team of specialists in Preventive and Internal Medicine established a protocol for active surveillance, identification of suspected and confirmed cases, and follow-up of contacts. Also, a Unit for the care of confirmed cases was created with personnel specifically trained in Covid-19, to achieve better patient care and optimize the available resources. Descriptive statistical measures have been used to analyze the data. RESULTS: The prevalence of Covid-19 was 12.2%, with a cumulative incidence of 8.2%. After the protocol was established, control of the disease was achieved without hospital transmission after its application. Due to the alarm generated at the start of the pandemic, up to 45% of the requested RT-PCRs did not meet the criteria of the Ministry of Health, all of which were negative. The clinical characteristics of our patients differed slightly from those observed in other studies published in the general population, with cough and asthenia being the most frequent symptoms, present in 69.2% and 38.5%, respectively. 100% of the infected patients did not present complications that required assistance in the Intensive Care Unit. CONCLUSIONS: With the application of preventive and organizational actions, we consider that we have presented a low incidence of those infected. The preparation of protocols and their supervision is essential for the rapid identification of cases and optimization of the tests requested. Despite being a medium and long-stay hospital, we have not presented any mortality or complications that required admission to the Intensive Care Unit.
OBJETIVO: Los efectos de la emergencia sanitaria por la Covid-19 han demostrado la alta vulnerabilidad de las personas que residen en centros de media y larga estancia, con altas tasas de mortalidad. Se disponen de pocos datos acerca de los protocolos de contingencia para minimizar la propagación del virus en estos centros. El objetivo de este estudio fue describir las características clínicas y epidemiológicas de los pacientes afectados por el SARS-CoV-2, así como las medidas preventivas y de gestión adoptadas en el Hospital Nacional de Parapléjicos (Toledo) para minimizar el riesgo de transmisión de la Covid-19. METODOS: Un equipo formado por especialistas en Medicina Preventiva y en Medicina Interna del Hospital Nacional de Parapléjicos estableció un protocolo de vigilancia activa, identificación de casos sospechosos y confirmados, así como de seguimiento de contactos. Además, se creó una Unidad para la atención de los casos confirmados, con personal formado específicamente en Covid-19, para intentar lograr una mejor atención de los pacientes y optimización de los recursos materiales disponibles. Para el análisis de los datos se han utilizado medidas estadísticas descriptivas. RESULTADOS: La prevalencia de la Covid-19 fue del 12,2%, con una incidencia acumulada del 8,2%. Tras la instauración del protocolo se logró el control de la enfermedad, sin transmisión intrahospitalaria posterior a su aplicación. Debido a la alarma generada al inicio de la pandemia, hasta un 45% de las RT-PCR solicitadas no cumplían los criterios del Ministerio de Sanidad, siendo todas negativas. Las características clínicas de nuestros pacientes difirieron ligeramente de las observadas en otros estudios publicados en población general, siendo la tos y la astenia los síntomas más frecuentes, presentes en el 69,2% y el 38,5% respectivamente. El 100% de los pacientes infectados no presentaron complicaciones que precisaran asistencia en Unidad de Cuidados Intensivos. CONCLUSIONES: Con la aplicación de las acciones preventivas y organizativas consideramos que hemos presentado una incidencia baja de infectados. Es indispensable la elaboración de protocolos y su supervisión para la rápida identificación de casos y optimizar las pruebas solicitadas. Pese a ser un hospital de media y larga estancia, no hemos presentado mortalidad ni complicaciones que requirieran ingreso en Unidad de Cuidados Intensivos.
Assuntos
Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Hospitalização , Pandemias/prevenção & controle , Assistência ao Paciente/métodos , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Adulto , Betacoronavirus , COVID-19 , Feminino , Humanos , Incidência , Unidades de Terapia Intensiva , Masculino , Prevalência , SARS-CoV-2 , EspanhaRESUMO
In recent years, the need to derive sources of specialized cell types to be employed for cell replacement therapies and modeling studies has triggered a fast acceleration of novel cell reprogramming methods. In particular, in neuroscience, a number of protocols for the efficient differentiation of somatic or pluripotent stem cells have been established to obtain a renewable source of different neuronal cell types. Alternatively, several neuronal populations have been generated through direct reprogramming/transdifferentiation, which concerns the conversion of fully differentiated somatic cells into induced neurons. This is achieved through the forced expression of selected transcription factors (TFs) in the donor cell population. The reprogramming cocktail is chosen after an accurate screening process involving lists of TFs enriched into desired cell lineages. In some instances, this type of studies has revealed the crucial role of TFs whose function in the differentiation of a given specific cell type had been neglected or underestimated. Herein, we will speculate on how the in vitro studies have served to better understand physiological mechanisms of neuronal development in vivo.
RESUMO
Stem cell-derived neurons are generally obtained in mass cultures that lack both spatial organization and any meaningful connectivity. We implement a microfluidic system for long-term culture of human neurons with patterned projections and synaptic terminals. Co-culture of human midbrain dopaminergic and striatal medium spiny neurons on the microchip establishes an orchestrated nigro-striatal circuitry with functional dopaminergic synapses. We use this platform to dissect the mitochondrial dysfunctions associated with a genetic form of Parkinson's disease (PD) with OPA1 mutations. Remarkably, we find that axons of OPA1 mutant dopaminergic neurons exhibit a significant reduction of mitochondrial mass. This defect causes a significant loss of dopaminergic synapses, which worsens in long-term cultures. Therefore, PD-associated depletion of mitochondria at synapses might precede loss of neuronal connectivity and neurodegeneration. In vitro reconstitution of human circuitries by microfluidic technology offers a powerful system to study brain networks by establishing ordered neuronal compartments and correct synapse identity.
Assuntos
Neurônios Dopaminérgicos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Dispositivos Lab-On-A-Chip , Mitocôndrias/metabolismo , Neostriado/metabolismo , Substância Negra/metabolismo , Sinapses/metabolismo , Axônios/metabolismo , Células Cultivadas , GTP Fosfo-Hidrolases/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Rede Nervosa/metabolismo , Neuritos/metabolismo , Doença de Parkinson/metabolismoRESUMO
Neuroferritinopathy (NF) is a movement disorder caused by alterations in the L-ferritin gene that generate cytosolic free iron. NF is a unique pathophysiological model for determining the direct consequences of cell iron dysregulation. We established lines of induced pluripotent stem cells from fibroblasts from two NF patients and one isogenic control obtained by CRISPR/Cas9 technology. NF fibroblasts, neural progenitors, and neurons exhibited the presence of increased cytosolic iron, which was also detectable as: ferritin aggregates, alterations in the iron parameters, oxidative damage, and the onset of a senescence phenotype, particularly severe in the neurons. In this spontaneous senescence model, NF cells had impaired survival and died by ferroptosis. Thus, non-ferritin-bound iron is sufficient per se to cause both cell senescence and ferroptotic cell death in human fibroblasts and neurons. These results provide strong evidence supporting the primary role of iron in neuronal aging and degeneration.
Assuntos
Ferroptose , Distúrbios do Metabolismo do Ferro/patologia , Ferro/metabolismo , Distrofias Neuroaxonais/patologia , Neurônios/patologia , Células Cultivadas , Senescência Celular , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Distúrbios do Metabolismo do Ferro/metabolismo , Pessoa de Meia-Idade , Distrofias Neuroaxonais/metabolismo , Neurônios/metabolismoRESUMO
The development of intraneuronal lesions as a result of the progressive deposition of hyperphosphorylated tau at specific brain regions (such as hippocampus and cortex) plays a key role in the pathological process of Alzheimer's disease. However, the mechanisms by which tau phosphorylation is regulated, mainly in the pathology found in the cortex, are still poorly understood. Here, we analyzed the effect of cortistatin, a cortical neuropeptide related to somatostatin, on tau phosphorylation at Ser262 in cultures of murine cortical neurons. Both somatostatin and cortistatin induce tau phosphorylation at Ser262, a site modified in Alzheimer's disease, although with different kinetics in cortex. The effect of cortistatin likely is mediated by heterodimeric receptors composed of somatostatin receptor subtypes 2 and 4 and also by protein kinase C signaling. Cortistatin-deficient mice show decreased tau phosphorylation at Ser262 in the cortex but not in other brain regions tested. Our results suggest an important role for cortistatin in the regulation of tau phosphorylation that may be associated with the pathophysiology of Alzheimer's disease in regions such as the cerebral cortex.