Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Acc Chem Res ; 51(1): 97-106, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29293316

RESUMO

In the pursuit of energy storage devices with higher energy and power, new ion storage materials and high-voltage battery chemistries are of paramount importance. However, they invite-and often enhance-degradation mechanisms, which are reflected in capacity loss with charge/discharge cycling and sometimes in safety problems. Degradation mechanisms are often driven by fundamentals such as chemical and electrochemical reactions at electrode-electrolyte interfaces, volume expansion and stress associated with ion insertion and extraction, and profound inhomogeneity of electrochemical behavior. While it is important to identify and understand these mechanisms at some reasonable level, it is even more critical to design strategies to mitigate these degradation pathways and to develop means to implement and validate the strategies. A growing set of research highlights the mitigation benefits achievable by forming thin protection layers (PLs) intentionally created as artificial interphase regions at the electrode-electrolyte interface. These advances illustrate a promising-perhaps even generic-pathway for enabling higher-energy and higher-voltage battery configurations. In this Account, we summarize examples of such PLs that serve as mitigation strategies to avoid degradation in lithium metal anodes, conversion-type electrode materials, and alloy-type electrodes. Examples are chosen from a larger body of electrochemical degradation research carried out in Nanostructures for Electrical Energy Storage (NEES), our DOE Energy Frontier Research Center. Overall, we argue on the basis of experimental and theoretical evidence that PLs effectively stabilize the electrochemical interfaces to prevent parasitic chemical and electrochemical reactions and mitigate the structural, mechanical, and compositional degradation of the electrode materials at the electrode-electrolyte interfaces. The evidenced improvement in performance metrics is accomplished by (1) establishing a homogeneous interface for ion insertion and extraction, (2) providing mechanical constraints to maintain structural integrity and robust electronic and ionic conduction pathways, and (3) introducing spatial confinements on the electrode material matrix to alter the phase transformation (delaying the occurrence of the conversion reaction) upon Li insertion, which results in superior electrode performance, excellent capacity retention, and improved reversibility. Taken together, these examples portray a valuable role for thin protection layers synthesized over electrode surfaces, both for their benefit to cycle stability and for revealing insights into degradation and mitigation mechanisms. Furthermore, they underscore the impact of complex electrochemical behavior at nanoscale materials and nanostructure interfaces in modulating the behavior of energy storage devices at the mesoscale and macroscale.

2.
Acc Chem Res ; 49(10): 2336-2346, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27636834

RESUMO

Conventional electrical energy storage (EES) electrodes, such as rechargeable batteries, are mostly based on composites of monolithic micrometer sized particles bound together with polymeric and conductive carbon additives and binders. The kinetic limitations of these monolithic chunks of material are inherently linked to their electrical properties, the kinetics of ion insertion through their interface and ion migration in and through the composite phase. Redox chemistry of nanostructured materials in EES systems offer vast gains in power and energy. Furthermore, due to their thin nature, ion and electron transport is dramatically increased, especially when thin heterogeneous conducting layers are employed synergistically. However, since the stability of the electrode material is dictated by the nature of the electrochemical reaction and the accompanying volumetric and interfacial changes from the perspective of overall system lifetime, research with nanostructured materials has shown often indefinite conclusions: in some cases, an increase in unwanted side-reactions due to the high surface area (bad). In other cases, results have shown significantly better handling of mechanical stress that results from lithiation/delithiation (good). Despite these mixed results, scientifically informed design of thin electrode materials, with carefully chosen architectures, is considered a promising route to address many limitations witnessed in EES systems by reducing and protecting electrodes from parasitic reactions, accommodating mechanical stress due to volumetric changes from electrochemical reactions, and optimizing charge carrier mobilities from both the "ionic" and "electronic" points of view. Furthermore, precise nanoscale control over the electrode structure can enable accurate measurement through advanced spectroscopy and microscopy techniques. This Account summarizes recent findings related to thin electrode materials synthesized by atomic layer deposition (ALD) and electrochemical deposition (ECD), including nanowires, nanotubes, and thin films. Throughout the Account, we will show how these techniques enabled us to synthesize electrodes of interest with precise control over the structure and composition of the material. We will illustrate and discuss how the electrochemical response of thin electrodes made by these techniques can facilitate new mechanisms for ion storage, mediate the interfacial electrochemical response of the electrode, and address issues related to electrode degradation over time. The effects of nanosizing materials and their electrochemical response will be mechanistically reviewed through two categories of ion storage: (1) pseudocapacitance and (2) ion insertion. Additionally, we will show how electrochemical processes that are more complicated because of accompanying volumetric changes and electrode degradation pathways can be mediated and controlled by application of thin functional materials on the electrochemically active interface; examples include conversion electrodes, reactive lithium metal anodes, and complex reactions in a Li/O2 cathode system. The goal of this Account is to illustrate how careful design of thin materials either as active electrodes or as mediating layers can facilitate desirable interfacial electrochemical activity and resolve or shed light on mechanistic limitations of electrochemical processes related to micrometer size particles currently used in energy storage electrodes.

3.
Phys Chem Chem Phys ; 18(28): 19093-102, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27357533

RESUMO

Morphologically complex electrochemical systems such as composite or nanostructured lithium ion battery electrodes exhibit spatially inhomogeneous internal current distributions, particularly when driven at high total currents, due to resistances in the electrodes and electrolyte, distributions of diffusion path lengths, and nonlinear current-voltage characteristics. Measuring and controlling these distributions is interesting from both an engineering standpoint, as nonhomogenous currents lead to lower utilization of electrode material, as well as from a fundamental standpoint, as comparisons between theory and experiment are relatively scarce. Here we describe a new approach using a deliberately simple model battery electrode to examine the current distribution in a electrode material limited by poor electronic conductivity. We utilize quantitative spatially resolved X-ray photoelectron spectroscopy to measure the spatial distribution of the state-of-charge of a V2O5 model electrode as a proxy measure for the current distribution on electrodes discharged at varying current densities. We show that the current at the electrode-electrolyte interface falls off with distance from the current collector, and that the current distribution is a strong function of total current. We compare the observed distributions with a simple analytical model which reproduces the dependence of the distribution on total current, but fails to predict the correct length scale. A more complete numerical simulation suggests that dynamic changes in the electronic conductivity of the V2O5 concurrent with lithium insertion may contribute to the differences between theory and experiment. Our observations should help inform design criteria for future electrode architectures.

4.
Phys Chem Chem Phys ; 18(44): 30605-30611, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27786319

RESUMO

Here we introduce a strategy for creating nanotube array electrodes which feature periodic regions of porous interconnections providing open pathways between adjacent nanotubes within the array, utilizing a combination of anodized aluminum oxide growth modification (AAO) and atomic layer deposition. These porous interconnected structures can then be used as testbed electrodes to explore the influence of mesoscale structure on the electrochemical properties of the interconnected mesoporous electrodes. Critically, these unique structures allow the solid state lithium diffusion pathways to be held essentially constant, while the larger structure is modified. While it was anticipated that this strategy would simply provide increased mass loading, the kinetics of the Li+ ion insertion reaction in the porous interconnected electrodes are dramatically improved, demonstrating significantly better capacity retention at high rates than their aligned counterparts. We utilize a charge deconvolution method to explore the kinetics of the charge storage reactions. We are able to trace the origin of the structural influence on rate performance to electronic effects within the electrodes.

5.
Angew Chem Int Ed Engl ; 55(34): 9898-901, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27417442

RESUMO

Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite-free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg(-1) ) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx . Herein, we demonstrate the first reversible Al/S battery in ionic-liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid-state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid-state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system.

6.
J Am Chem Soc ; 137(38): 12388-93, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26360783

RESUMO

Mg metal is a promising anode material for next generation rechargeable battery due to its dendrite-free deposition and high capacity. However, the best cathode for rechargeable Mg battery was based on high molecular weight MgxMo3S4, thus rendering full cell energetically uncompetitive. To increase energy density, high capacity cathode material like sulfur is proposed. However, to date, only limited work has been reported on Mg/S system, all plagued by poor reversibility attributed to the formation of electrochemically inactive MgSx species. Here, we report a new strategy, based on the effect of Li(+) in activating MgSx species, to conjugate a dendrite-free Mg anode with a reversible polysulfide cathode and present a truly reversible Mg/S battery with capacity up to 1000 mAh/gs for more than 30 cycles. Mechanistic insights supported by spectroscopic and microscopic characterization strongly suggest that the reversibility arises from chemical reactivation of MgSx by Li(+).

7.
Mol Syst Biol ; 9: 636, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23340842

RESUMO

Escherichia coli were genetically modified to enable programmed motility, sensing, and actuation based on the density of features on nearby surfaces. Then, based on calculated feature density, these cells expressed marker proteins to indicate phenotypic response. Specifically, site-specific synthesis of bacterial quorum sensing autoinducer-2 (AI-2) is used to initiate and recruit motile cells. In our model system, we rewired E. coli's AI-2 signaling pathway to direct bacteria to a squamous cancer cell line of head and neck (SCCHN), where they initiate synthesis of a reporter (drug surrogate) based on a threshold density of epidermal growth factor receptor (EGFR). This represents a new type of controller for targeted drug delivery as actuation (synthesis and delivery) depends on a receptor density marking the diseased cell. The ability to survey local surfaces and initiate gene expression based on feature density represents a new area-based switch in synthetic biology that will find use beyond the proposed cancer model here.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Escherichia coli/genética , Neoplasias de Cabeça e Pescoço/genética , Homosserina/análogos & derivados , Lactonas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Engenharia Genética/métodos , Neoplasias de Cabeça e Pescoço/patologia , Homosserina/genética , Homosserina/metabolismo , Humanos , Nanotecnologia , Percepção de Quorum
8.
Phys Chem Chem Phys ; 16(6): 2224-39, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24366393

RESUMO

Surface enhanced Raman spectroscopy (SERS) is a powerful spectroscopic technique capable of detecting trace amounts of chemicals and identifying them based on their unique vibrational characteristics. While there are many complex methods for fabricating SERS substrates, there has been a recent shift towards the development of simple, low cost fabrication methods that can be performed in most labs or even in the field. The potential of SERS for widespread use will likely be realized only with development of cheaper, simpler methods. In this Perspective article we briefly review several of the more popular methods for SERS substrate fabrication, discuss the characteristics of simple SERS substrates, and examine several methods for producing simple SERS substrates. We highlight potential applications and future directions for simple SERS substrates, focusing on highly SERS active three-dimensional nanostructures fabricated by inkjet and screen printing and galvanic displacement for portable SERS analysis - an area that we believe has exciting potential for future research and commercialization.


Assuntos
Nanoestruturas/química , Análise Espectral Raman/instrumentação , Desenho de Equipamento , Microtecnologia/instrumentação , Microtecnologia/métodos , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Propriedades de Superfície
9.
ChemSusChem ; : e202400718, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840571

RESUMO

Sulfide solid state electrolytes (SSE) are among the most promising materials in the effort to replace liquid electrolytes, largely due to their comparable ionic conductivities. Among the sulfide SSEs, Argyrodites (Li6PS5X, X=Cl, Br, I) further stand out due to their high theoretical ionic conductivity (~1×10-2 S cm-1) and interfacial stability against reactive metal anodes such as lithium. Generally, solid state electrolyte pellets are pressed from powder feedstock at room temperature, however, pellets fabricated by cold pressing consistently result in low bulk density and high porosity, facilitating interfacial degradation reactions and allowing dendrites to propagate through the pores and grain boundaries. Here, we demonstrate the mechanical and electrochemical implications of hot-pressing standalone LPSCl SSE pellets with near-theoretical ionic conductivity, superior cycling performance, and enhanced mechanical stability. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and x-ray diffraction spectroscopy (XRD) analysis reveal no chemical changes to the Argyrodite surface after hot pressing up to 250 °C. Moreover, we use electrochemical impedance spectroscopy (EIS) to understand mechanical stability of Argyrodite SSE pellets as a function of externally applied pressure, demonstrating for the first time pressed standalone Argyrodite pellets with near-theoretical conductivities at external pressures below 14 MPa.

10.
ACS Appl Mater Interfaces ; 15(20): 24271-24283, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37167022

RESUMO

Nanostructured solid-state batteries (SSBs) are poised to meet the demands of next-generation energy storage technologies by realizing performance competitive to their liquid-based counterparts while simultaneously offering improved safety and expanded form factors. Atomic layer deposition (ALD) is among the tools essential to fabricate nanostructured devices with challenging aspect ratios. Here, we report the fabrication and electrochemical testing of the first nanoscale sodium all-solid-state battery (SSB) using ALD to deposit both the V2O5 cathode and NaPON solid electrolyte followed by evaporation of a thin-film Na metal anode. NaPON exhibits remarkable stability against evaporated Na metal, showing no electrolyte breakdown or significant interphase formation in the voltage range of 0.05-6.0 V vs Na/Na+. Electrochemical analysis of the SSB suggests intermixing of the NaPON/V2O5 layers during fabrication, which we investigate in three ways: in situ spectroscopic ellipsometry, time-resolved X-ray photoelectron spectroscopy (XPS) depth profiling, and cross-sectional cryo-scanning transmission electron microscopy (cryo-STEM) coupled with electron energy loss spectroscopy (EELS). We characterize the interfacial reaction during the ALD NaPON deposition on V2O5 to be twofold: (1) reduction of V2O5 to VO2 and (2) Na+ insertion into VO2 to form NaxVO2. Despite the intermixing of NaPON-V2O5, we demonstrate that NaPON-coated V2O5 electrodes display enhanced electrochemical cycling stability in liquid-electrolyte coin cells through the formation of a stable electrolyte interphase. In all-SSBs, the Na metal evaporation process is found to intensify the intermixing reaction, resulting in the irreversible formation of mixed interphases between discrete battery layers. Despite this graded composition, the SSB can operate for over 100 charge-discharge cycles at room temperature and represents the first demonstration of a functional thin-film solid-state sodium-ion battery.

11.
Biomacromolecules ; 13(4): 1181-9, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22414205

RESUMO

The electrodeposition of hydrogels provides a programmable means to assemble soft matter for various technological applications. We report an anodic method to deposit hydrogel films of the aminopolysaccharide chitosan. Evidence suggests the deposition mechanism involves the electrolysis of chloride to generate reactive chlorine species (e.g., HOCl) that partially oxidize chitosan to generate aldehydes that can couple covalently with amines (presumably through Schiff base linkages). Chitosan's anodic deposition is controllable spatially and temporally. Consistent with a covalent cross-linking mechanism, the deposited chitosan undergoes repeated swelling/deswelling in response to pH changes. Consistent with a covalent conjugation mechanism, proteins could be codeposited and retained within the chitosan film even after detergent washing. As a proof-of-concept, we electroaddressed glucose oxidase to a side-wall electrode of a microfabricated fluidic channel and demonstrated this enzyme could perform electrochemical biosensing functions. Thus, anodic chitosan deposition provides a reagentless, single-step method to electroaddress a stimuli-responsive and biofunctionalized hydrogel film.


Assuntos
Biopolímeros/química , Quitosana/química , Galvanoplastia/métodos , Glucose Oxidase/química , Hidrogéis/química , Técnicas Biossensoriais , Reagentes de Ligações Cruzadas/química , Técnicas Eletroquímicas , Eletrodos , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio
12.
Analyst ; 137(4): 826-8, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22231068

RESUMO

Melamine can be detected in infant formula without the need for additional sample preparation or purification using a simple galvanic displacement reaction to fabricate portable silver SERS substrates. The reaction is rapid, inexpensive, and robust enough to perform well on highly heterogeneous common metal objects such as tape and coins.


Assuntos
Contaminação de Alimentos/análise , Fórmulas Infantis/química , Análise Espectral Raman/métodos , Triazinas/análise , Humanos , Lactente , Recém-Nascido , Compostos de Prata
13.
Dalton Trans ; 51(5): 2068-2082, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35048935

RESUMO

A key trailblazer in the development of thin-film solid-state electrolytes has been lithium phosphorous oxynitride (LiPON), the success of which has led to recent progress in thin-film ion conductors. Here we compare the structural, electrochemical, and processing parameters between previously published LiPON and NaPON ALD processes with a novel ALD process for the K analogue potassium phosphorous oxynitride (KPON). In each ALD process, alkali tert-butoxides and diethylphosphoramidate are used as precursors. To understand the ALD surface reactions, this work proposes a reaction mechanism determined by in-operando mass spectrometry for the LiPON process as key to understanding the characteristics of the APON (A = Li, Na, K) family. As expected, NaPON and LiPON share similar reaction mechanisms as their structures are strikingly similar. KPON, however, exhibits similar ALD process parameters but the resulting film composition is quite different, showing little nitrogen incorporation and more closely resembling a phosphate glass. Due to the profound difference in structure, KPON likely undergoes an entirely different reaction mechanism. This paper presents a comprehensive summary of ALD ion conducting APON films as well as a perspective that highlights the versatility of ALD chemistries as a tool for the development of novel thin film ion-conductors.

14.
Lab Chip ; 22(17): 3203-3216, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35856590

RESUMO

Chemotaxis is a fundamental bacterial response mechanism to changes in chemical gradients of specific molecules known as chemoattractant or chemorepellent. The advancement of biological platforms for bacterial chemotaxis research is of significant interest for a wide range of biological and environmental studies. Many microfluidic devices have been developed for its study, but challenges still remain that can obscure analysis. For example, cell migration can be compromised by flow-induced shear stress, and bacterial motility can be impaired by nonspecific cell adhesion to microchannels. Also, devices can be complicated, expensive, and hard to assemble. We address these issues with a three-channel microfluidic platform integrated with natural biopolymer membranes that are assembled in situ. This provides several unique attributes. First, a static, steady and robust chemoattractant gradient was generated and maintained. Second, because the assembly incorporates assembly pillars, the assembled membrane arrays connecting nearby pillars can be created longer than the viewing window, enabling a wide 2D area for study. Third, the in situ assembled biopolymer membranes minimize pressure and/or chemiosmotic gradients that could induce flow and obscure chemotaxis study. Finally, nonspecific cell adhesion is avoided by priming the polydimethylsiloxane (PDMS) microchannel surfaces with Pluronic F-127. We demonstrated chemotactic migration of Escherichia coli as well as Pseudomonas aeruginosa under well-controlled easy-to-assemble glucose gradients. We characterized motility using the chemotaxis partition coefficient (CPC) and chemotaxis migration coefficient (CMC) and found our results consistent with other reports. Further, random walk trajectories of individual cells in simple bright field images were conveniently tracked and presented in rose plots. Velocities were calculated, again in agreement with previous literature. We believe the biopolymer membrane-integrated platform represents a facile and convenient system for robust quantitative assessment of cellular motility in response to various chemical cues.


Assuntos
Quimiotaxia , Técnicas Analíticas Microfluídicas , Biopolímeros , Fatores Quimiotáticos , Quimiotaxia/fisiologia , Escherichia coli/fisiologia , Microfluídica
15.
Langmuir ; 27(12): 7380-4, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21598916

RESUMO

Electroaddressing, the use of imposed electrical stimuli to guide assembly, is attractive because electrical stimuli can be conveniently applied with high spatial and temporal resolution. Several electroaddressing mechanisms have been reported in which electrode-induced pH gradients trigger stimuli-responsive materials to undergo localized sol-gel transitions to form hydrogel matrices. A common feature of existing hydrogel electrodeposition mechanisms is that the deposited matrix retains residual charged, acidic, or basic (macro)molecules. Here, we report that pH-responsive fluorenyl-9-methoxycarbonyl-phenylalanine (Fmoc-Phe) can be used to codeposit the neutral and thermally responsive polysaccharide agarose. Upon cooling, an agarose network is generated and Fmoc-Phe can be removed. The Fmoc-Phe-mediated codeposition of agarose is simple, rapid, spatially selective, and allows for the electroaddressing of a bioactive matrix.


Assuntos
Aminoácidos/química , Fluorenos/química , Fenilalanina/química , Sefarose/química , Humanos , Concentração de Íons de Hidrogênio , Análise Espectral Raman
16.
Phys Chem Chem Phys ; 13(46): 20714-23, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21997843

RESUMO

High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

17.
Phys Chem Chem Phys ; 13(33): 15221-6, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21776451

RESUMO

MnO(2)/TiN nanotubes are fabricated using facile deposition techniques to maximize the surface area of the electroactive material for use in electrochemical capacitors. Atomic layer deposition is used to deposit conformal nanotubes within an anodic aluminium oxide template. After template removal, the inner and outer surfaces of the TiN nanotubes are exposed for electrochemical deposition of manganese oxide. Electron microscopy shows that the MnO(2) is deposited on both the inside and outside of TiN nanotubes, forming the MnO(2)/TiN nanotubes. Cyclic voltammetry and galvanostatic charge-discharge curves are used to characterize the electrochemical properties of the MnO(2)/TiN nanotubes. Due to the close proximity of MnO(2) with the highly conductive TiN as well as the overall high surface area, the nanotubes show very high specific capacitance (662 F g(-1) reported at 45 A g(-1)) as a supercapacitor electrode material. The highly conductive and mechanically stable TiN greatly enhances the flow of electrons to the MnO(2) material, while the high aspect ratio nanostructure of TiN creates a large surface area for short diffusion paths for cations thus improving high power. Combining the favourable structural, electrical and energy properties of MnO(2) and TiN into one system allows for a promising electrode material for supercapacitors.

18.
Lab Chip ; 10(1): 59-65, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20024051

RESUMO

We report the in situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. The pH-stimuli-responsive polysaccharide chitosan was enlisted to form a freestanding hydrophilic membrane structure in microfluidic networks where pH gradients are generated at the converging interface between a slightly acidic chitosan solution and a slightly basic buffer solution. A simple and effective pumping strategy was devised to realize a stable flow interface thereby generating a stable, well-controlled and localized pH gradient. Chitosan molecules were deprotonated at the flow interface, causing gelation and solidification of a freestanding chitosan membrane from a nucleation point at the junction of two converging flow streams to an anchoring point where the two flow streams diverge to two output channels. The fabricated chitosan membranes were about 30-60 microm thick and uniform throughout the flow interface inside the microchannels. A T-shaped membrane formed by sequentially fabricating orthogonal membranes demonstrates flexibility of the assembly process. The membranes are permeable to aqueous solutions and are removed by mildly acidic solutions. Permeability tests suggested that the membrane pore size was a few nanometres, i.e., the size range of antibodies. Building on the widely reported use of chitosan as a soft interconnect for biological components and microfabricated devices and the broad applications of membrane functionalities in microsystems, we believe that the facile, rapid biofabrication of freestanding chitosan membranes can be applied to many biochemical, bioanalytical, biosensing applications and cellular studies.


Assuntos
Quitosana/química , Dispositivos Lab-On-A-Chip , Membranas Artificiais , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Estrutura Molecular , Permeabilidade , Porosidade
19.
Lab Chip ; 10(9): 1128-34, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20390130

RESUMO

The emergence of bacteria that evade antibiotics has accelerated research on alternative approaches that do not target cell viability. One such approach targets cell-cell communication networks mediated by small molecule signaling. In this report, we assemble biological nanofactories within a bioMEMS device to capture and manipulate the behavior of quorum sensing (QS) bacteria as a step toward modifying small molecule signaling. Biological nanofactories are bio-inspired nanoscale constructs which can include modules with different functionalities, such as cell targeting, molecular sensing, product synthesis, and ultimately self-destruction. The biological nanofactories reported here consist of targeting, sensing, synthesis and, importantly, assembly modules. A bacteria-specific antibody constitutes the targeting module while a genetically engineered fusion protein contains the sensing, synthesis and assembly modules. The nanofactories are assembled on chitosan electrodeposited within a microchannel of the bioMEMS device; they capture QS bacteria in a spatially selective manner and locally synthesize and deliver the "universal" small signaling molecule autoinducer-2 (AI-2) at the captured cell surface. The nanofactory based AI-2 delivery is demonstrated to alter the progression of the native AI-2 based QS response of the captured bacteria. Prospects are envisioned for utilizing our technique as a test-bed for understanding the AI-2 based QS response of bacteria as a means for developing the next generation of antimicrobials.


Assuntos
Técnicas de Cultura de Células/instrumentação , Separação Celular/instrumentação , Escherichia coli/fisiologia , Sistemas Microeletromecânicos/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Micromanipulação/instrumentação , Percepção de Quorum/fisiologia , Bioensaio/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotecnologia/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
ACS Appl Mater Interfaces ; 12(19): 21641-21650, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32315520

RESUMO

The development of novel materials that are compatible with nanostructured architectures is required to meet the demands of next-generation energy-storage technologies. Atomic layer deposition (ALD) allows for the precise synthesis of new materials that can conformally coat complex 3D structures. In this work, we demonstrate a thermal ALD process for sodium phosphorus oxynitride (NaPON), a thin-film solid-state electrolyte (SSE), for sodium-ion batteries (SIBs). NaPON is analogous to the commonly used lithium phosphorus oxynitride SSE in lithium-ion batteries. The ALD process produces a conformal film with a stoichiometry of Na4PO3N, corresponding to a sodium polyphosphazene structure. The electrochemical properties of NaPON are characterized to evaluate its potential in SIBs. The NaPON film exhibited a high ionic conductivity of 1.0 × 10-7 S/cm at 25 °C and up to 2.5 × 10-6 S/cm at 80 °C, with an activation energy of 0.53 eV. In addition, the ionic conductivity is comparable and even higher than the ionic conductivities of ALD-fabricated Li+ conductors. This promising result makes NaPON a viable SSE or passivation layer in solid-state SIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA