Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5117-5124, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629940

RESUMO

Stacking monolayer semiconductors creates moiré patterns, leading to correlated and topological electronic phenomena, but measurements of the electronic structure underpinning these phenomena are scarce. Here, we investigate the properties of the conduction band in moiré heterobilayers of WS2/WSe2 using submicrometer angle-resolved photoemission spectroscopy with electrostatic gating. We find that at all twist angles the conduction band edge is the K-point valley of the WS2, with a band gap of 1.58 ± 0.03 eV. From the resolved conduction band dispersion, we deduce an effective mass of 0.15 ± 0.02 me. Additionally, we observe replicas of the conduction band displaced by reciprocal lattice vectors of the moiré superlattice. We argue that the replicas result from the moiré potential modifying the conduction band states rather than final-state diffraction. Interestingly, the replicas display an intensity pattern with reduced 3-fold symmetry, which we show implicates the pseudo vector potential associated with in-plane strain in moiré band formation.

2.
Phys Rev Lett ; 132(9): 096702, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489652

RESUMO

Spin-phonon coupling enables the mutual manipulation of phonon and spin degrees of freedom in solids. In this study, we reveal the inherent nonlinearity within this coupling. Using a paramagnet as an illustration, we demonstrate the nonlinearity by unveiling spontaneous symmetry breaking under a periodic drive. The drive originates from linearly polarized light, respecting a mirror reflection symmetry of the system. However, this symmetry is spontaneously broken in the steady state, manifested in the emergence of coherent chiral phonons accompanied by a nonzero magnetization. We establish an analytical self-consistency equation to find the parameter regime where spontaneous symmetry breaking occurs. Furthermore, we estimate realistic parameters and discuss potential materials that could exhibit this behavior. Our findings shed light on the exploration of nonlinear phenomena in magnetic materials and present possibilities for on-demand control of magnetization.

3.
Nano Lett ; 22(23): 9351-9357, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36383645

RESUMO

The optical responses of metals are often dominated by plasmonic resonances, that is, the collective oscillations of interacting electron liquids. Here we unveil a new class of plasmons─quantum metric plasmons (QMPs)─that arise in a wide range of parity-violating magnetic metals. In these materials, a dipolar distribution of the quantum metric (a fundamental characteristic of Bloch wave functions) produces intrinsic nonreciprocal bulk plasmons. Strikingly, QMP nonreciprocity manifests even when the single-particle dispersion is symmetric: QMPs are sensitive to time-reversal and parity violations hidden in the Bloch wave function. In materials with asymmetric single-particle dispersions, quantum metric dipole induced nonreciprocity can continue to dominate at large frequencies. We anticipate that QMPs can be realized in a wide range of parity-violating magnets, including twisted bilayer graphene heterostructures, where quantum geometric quantities can achieve large values.

4.
Nano Lett ; 22(14): 5751-5758, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35787025

RESUMO

Stack engineering, an atomic-scale metamaterial strategy, enables the design of optical and electronic properties in van der Waals heterostructure devices. Here we reveal the optoelectronic effects of stacking-induced strong coupling between atomic motion and interlayer excitons in WSe2/MoSe2 heterojunction photodiodes. To do so, we introduce the photocurrent spectroscopy of a stack-engineered photodiode as a sensitive technique for probing interlayer excitons, enabling access to vibronic states typically found only in molecule-like systems. The vibronic states in our stack are manifest as a palisade of pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances and can be shifted "on demand" through the application of a perpendicular electric field via a source-drain bias voltage. The observation of multiple well-resolved sidebands as well as their ability to be shifted by applied voltages vividly demonstrates the emergence of interlayer exciton vibronic structure in a stack-engineered optoelectronic device.

5.
Phys Rev Lett ; 127(16): 166804, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723589

RESUMO

We study a disordered one-dimensional fermionic system subject to quasiperiodic driving by two modes with incommensurate frequencies. We show that the system supports a topological phase in which energy is transferred between the two driving modes at a quantized rate. The phase is protected by a combination of disorder-induced spatial localization and frequency localization, a mechanism unique to quasiperiodically driven systems. We demonstrate that an analogue of the phase can be realized in a cavity-qubit system driven by two incommensurate modes.

6.
Phys Rev Lett ; 123(24): 246803, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922820

RESUMO

Two-dimensional topological insulators (TIs) host gapless helical edge states that are predicted to support a quantized two-terminal conductance. Quantization is protected by time-reversal symmetry, which forbids elastic backscattering. Paradoxically, the current-carrying state itself breaks the time-reversal symmetry that protects it. Here we show that the combination of electron-electron interactions and momentum-dependent spin polarization in helical edge states gives rise to feedback through which an applied current opens a gap in the edge state dispersion, thereby breaking the protection against elastic backscattering. Current-induced gap opening is manifested via a nonlinear contribution to the system's I-V characteristic, which persists down to zero temperature. We discuss prospects for realizations in recently discovered large bulk band gap TIs, and an analogous current-induced gap opening mechanism for the surface states of three-dimensional TIs.

7.
Proc Natl Acad Sci U S A ; 113(17): 4658-63, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071090

RESUMO

Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

8.
Phys Rev Lett ; 121(3): 036801, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085807

RESUMO

We study transient dynamics in a two-dimensional system of interacting Dirac fermions subject to a quenched drive with circularly polarized light. In the absence of interactions, the drive opens a gap at the Dirac point in the quasienergy spectrum, inducing nontrivial band topology. We investigate the dynamics of this gap opening process, taking into account the essential role of electron-electron interactions. Crucially, scattering due to interactions (1) induces dephasing, which erases memory of the system's prequench state and yields the intrinsic timescale for gap emergence, and (2) provides a mechanism for the system to absorb energy of the drive, leading to heating which must be mitigated to ensure the success of Floquet band engineering. We characterize the gap opening process via the system's generalized spectral function and correlators probed by photoemission experiments, and we identify a parameter regime at moderate driving frequencies where a hierarchy of timescales allows a well-defined Floquet gap to be produced and studied before the deleterious effects of heating set in.

9.
Phys Rev Lett ; 121(18): 186601, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444400

RESUMO

The unexpected appearance of a fractional quantum Hall effect (FQHE) plateau at ν=2+6/13 [A. Kumar et al., Phys. Rev. Lett. 105, 246808 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.246808] offers a clue into the physical mechanism of the FQHE in the second Landau level (SLL). Here we propose a "3[over ¯]2[over ¯]111" parton wave function, which is topologically distinct from the 6/13 state in the lowest Landau level. We demonstrate the 3[over ¯]2[over ¯]111 state to be a good candidate for the ν=2+6/13 FQHE, and make predictions for experimentally measurable properties that can reveal the nature of this state. Furthermore, we propose that the "n[over ¯]2[over ¯]111" family of parton states naturally describes many observed SLL FQHE plateaus.

10.
Phys Rev Lett ; 119(18): 186801, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219581

RESUMO

We study micromotion in two-dimensional periodically driven systems in which all bulk Floquet eigenstates are localized by disorder. We show that this micromotion gives rise to a quantized time-averaged orbital magnetization density in any region completely filled with fermions. The quantization of magnetization density has a topological origin, and reveals the physical nature of the new phase identified in P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H. Lindner [Phys. Rev. X 6, 021013 (2016)PRXHAE2160-330810.1103/PhysRevX.6.021013]. We thus establish that the topological index of this phase can be accessed directly in bulk measurements, and propose an experimental protocol to do so using interferometry in cold-atom-based realizations.

11.
Phys Rev Lett ; 118(17): 177702, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498694

RESUMO

Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over 6 orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f^{2} for frequency f≳1 Hz. Increasing the applied magnetic field from 0.1 to 0.75 T suppresses electron-mediated spin diffusion, which decreases the spectral content in the 1/f^{2} region and lowers the saturation frequency, each by an order of magnitude, consistent with a numerical model. Spectral content at megahertz frequencies is accessed using dynamical decoupling, which shows a crossover from the few-pulse regime (≲16π pulses), where transverse Overhauser fluctuations dominate dephasing, to the many-pulse regime (≳32 π pulses), where longitudinal Overhauser fluctuations with a 1/f spectrum dominate.

12.
Phys Rev Lett ; 117(1): 017001, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419584

RESUMO

We investigate the formation of a new type of composite topological excitation-the Skyrmion-vortex pair (SVP)-in hybrid systems consisting of coupled ferromagnetic and superconducting layers. Spin-orbit interaction in the superconductor mediates a magnetoelectric coupling between the vortex and the Skyrmion, with a sign (attractive or repulsive) that depends on the topological indices of the constituents. We determine the conditions under which a bound SVP is formed and characterize the range and depth of the effective binding potential through analytical estimates and numerical simulations. Furthermore, we develop a semiclassical description of the coupled Skyrmion-vortex dynamics and discuss how SVPs can be controlled by applied spin currents.

13.
Phys Rev Lett ; 116(13): 136804, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081998

RESUMO

In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.

14.
Phys Rev Lett ; 114(24): 247205, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26197005

RESUMO

We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase.

15.
Phys Rev Lett ; 115(4): 040402, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252670

RESUMO

We present the first experimental observation of a topological transition in a non-Hermitian system. In contrast to standard methods for examining topological properties, which involve probing edge (or surface) states, we monitor the topological transition by employing bulk dynamics only. The system is composed of a lattice of evanescently coupled optical waveguides, and non-Hermitian behavior is engineered by inducing bending loss by spatially "wiggling" every second waveguide.

16.
Phys Rev Lett ; 113(24): 247002, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541796

RESUMO

We study multiphoton resonances in a strongly driven three-level quantum system, where one level is periodically swept through a pair of levels with constant energy separation E. Near the multiphoton resonance condition nℏω=E, where n is an integer, we find qualitatively different behavior for n even or odd. We explain this phenomenon in terms of families of interfering trajectories of the multilevel system. Remarkably, the behavior is insensitive to fluctuations of the energy of the driven level, and survives deep into the strong dephasing regime. The setup can be relevant for a variety of solid state and atomic or molecular systems. In particular, it provides a clear mechanism to explain recent puzzling experimental observations in strongly driven double quantum dots.

17.
Nature ; 455(7209): 51-7, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18769433

RESUMO

The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system's response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting 'spectroscopy diamonds', the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom's spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.

18.
Phys Rev Lett ; 108(20): 206811, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23003173

RESUMO

We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve as a realization of the Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A quantized flexural mode of the suspended tube plays the role of the optical mode and we identify two distinct two-level subspaces, at small and large magnetic field, which can be used as qubits in this setup. The strong intrinsic spin-mechanical coupling allows for detection, as well as manipulation of the spin qubit, and may yield enhanced performance of nanotubes in sensing applications.

19.
Nano Lett ; 11(11): 4688-92, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21936568

RESUMO

Strong electron-electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.


Assuntos
Grafite/química , Grafite/efeitos da radiação , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Condutividade Elétrica , Luz , Teste de Materiais , Doses de Radiação
20.
Nano Lett ; 11(10): 4134-7, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21879753

RESUMO

We study photodetection in graphene near a local electrostatic gate, which enables active control of the potential landscape and carrier polarity. We find that a strong photoresponse only appears when and where a p-n junction is formed, allowing on-off control of photodetection. Photocurrents generated near p-n junctions do not require biasing and can be realized using submicrometer gates. Locally modulated photoresponse enables a new range of applications for graphene-based photodetectors including, for example, pixilated infrared imaging with control of response on subwavelength dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA