Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(16): 7524-7531, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565722

RESUMO

The composition of the solid electrolyte interphase (SEI) plays an important role in controlling Li-electrolyte reactions, but the underlying cause of SEI composition differences between electrolytes remains unclear. Many studies correlate SEI composition with the bulk solvation of Li ions in the electrolyte, but this correlation does not fully capture the interfacial phenomenon of SEI formation. Here, we provide a direct connection between SEI composition and Li-ion solvation by forming SEIs using polar substrates that modify interfacial solvation structures. We circumvent the deposition of Li metal by forming the SEI above Li+/Li redox potential. Using theory, we show that an increase in the probability density of anions near a polar substrate increases anion incorporation within the SEI, providing a direct correlation between interfacial solvation and SEI composition. Finally, we use this concept to form stable anion-rich SEIs, resulting in high performance lithium metal batteries.

2.
Nat Mater ; 21(4): 445-454, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35039645

RESUMO

Designing a stable solid-electrolyte interphase on a Li anode is imperative to developing reliable Li metal batteries. Herein, we report a suspension electrolyte design that modifies the Li+ solvation environment in liquid electrolytes and creates inorganic-rich solid-electrolyte interphases on Li. Li2O nanoparticles suspended in liquid electrolytes were investigated as a proof of concept. Through theoretical and empirical analyses of Li2O suspension electrolytes, the roles played by Li2O in the liquid electrolyte and solid-electrolyte interphases of the Li anode are elucidated. Also, the suspension electrolyte design is applied in conventional and state-of-the-art high-performance electrolytes to demonstrate its applicability. Based on electrochemical analyses, improved Coulombic efficiency (up to ~99.7%), reduced Li nucleation overpotential, stabilized Li interphases and prolonged cycle life of anode-free cells (~70 cycles at 80% of initial capacity) were achieved with the suspension electrolytes. We expect this design principle and our findings to be expanded into developing electrolytes and solid-electrolyte interphases for Li metal batteries.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Eletrólitos
3.
ACS Polym Au ; 2(5): 361-370, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36254314

RESUMO

The mechanical and dynamic properties of developing networks near the gel point are susceptible to the distribution of clusters coexisting with percolating networks. The distribution of cluster numbers follows a broad power law, wrapped by a cutoff function that rapidly decays at a characteristic size. The form of the cutoff function has been speculated based on known results from lattice percolation and, in certain cases, solved. We obtained this cutoff function from simulated dynamic clusters of polymeric precursor chains using a hybrid Monte Carlo algorithm. The results obtained from three different precursor chain lengths are consistent with each other and are consistent with the expectation from lattice percolation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA