Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887320

RESUMO

Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.


Assuntos
Neoplasias Hematológicas , Neoplasias , Selênio , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Neoplasias/tratamento farmacológico , Qualidade de Vida , Selênio/metabolismo
2.
Bioorg Med Chem Lett ; 20(22): 6816-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20855208

RESUMO

Cancer therapy has moved beyond conventional chemotherapeutics to more mechanism-based targeted approaches. Studies demonstrate that histone deacetylase (HDAC) is a promising target for anticancer agents. Numerous, structurally diverse, hydroxamic acid derivative, HDAC inhibitors have been reported and have been shown to induce growth arrest, differentiation, autophagy, and/or apoptotic cell death by inhibiting multiple signaling pathways in cancer cells. Suberoylanilide hydroxamic acid (SAHA) has emerged as an effective anticancer therapeutic agent and was recently approved by the FDA for the treatment of advanced cutaneous T-cell lymphoma. In our previous study, we reported the development of the novel, potent, selenium-containing HDAC inhibitors (SelSA-1 and SelSA-2). In this study, the effects of SelSA-1 and SelSA-2 on signaling pathways and cytotoxicity were compared with the known HDAC inhibitor, SAHA, in lung cancer cell lines. After 24 h of treatment, SelSA-1 and SelSA-2 inhibited lung cancer cell growth to a greater extent than SAHA in a dose-dependent manner with IC(50) values at low micromolar concentrations. SelSA-1 and SelSA-2 inhibited ERK and PI3K-AKT signaling pathways while simultaneously increasing in autophagy in A549 cells in a time dependent manner. This preliminary study demonstrates the effectiveness of the selenium-containing analogs of SAHA, SelSA-1, and SelSA-2, as HDAC inhibitors and provides insight into the improvement and/or development of these analogs as a therapeutic approach for the treatment of lung cancer.


Assuntos
Neoplasias Pulmonares/patologia , Selênio/química , Linhagem Celular Tumoral , Humanos
3.
Sci Rep ; 7(1): 6474, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743906

RESUMO

Clustered class-I small heat-shock protein (sHSP) chaperone genes, SlHSP17.6, SlHSP20.0 and SlHSP20.1, in tomato are demonstrated to be transcriptionally regulated by ethylene during mature green (MG) fruit transition into ripening. These genes are constitutively expressed at MG fruit stage in two different tomato genotypes as well as in their ripening mutants, including rin, nor and Nr, and an ethylene-deficient transgenic line, ACS2-antisense. Notably, ethylene treatment of the MG fruit led to significant sHSP gene suppression in both wild-types, ACS2-antisense, nor/nor and Nr/Nr, but not the rin/rin mutant. Inability of ethylene to suppress sHSP genes in rin/rin mutant, which harbors MADS-RIN gene mutation, suggests that MADS-RIN transcription factor regulates the expression of these genes. Treatment of the wild type and ACS2-antisense fruit with the ethylene-signaling inhibitor, 1-methylcyclopropane (1-MCP), reversed the sHSP gene suppression. Transcripts of representative ethylene-responsive and ripening-modulated genes confirmed and validated sHSP transcript profile patterns. In silico analysis in conjunction with chromatin immunoprecipitation demonstrated MADS-RIN protein binding to specific CArG motifs present in the promoters of these chaperone genes. The results establish MADS-RIN protein as a transcriptional regulator of these chaperone genes in an ethylene-dependent manner, and that MADS-RIN protein-regulation of sHSPs is integral to tomato fruit ripening.


Assuntos
Etilenos/metabolismo , Proteínas de Choque Térmico/genética , Família Multigênica , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sítios de Ligação , Simulação por Computador , Ciclopropanos/farmacologia , Frutas/genética , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA