Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 71(4): 1289-1297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37971910

RESUMO

OBJECTIVE: Bioelectrical 'slow waves' regulate gastrointestinal contractions. We aimed to confirm whether the pyloric sphincter demarcates slow waves in the intact stomach and duodenum. METHODS: We developed and validated novel anatomically-specific electrode cradles and analysis techniques which enable high-resolution slow wave mapping across the in vivo gastroduodenal junction. Cradles housed flexible-printed-circuit and custom cradle-specific electrode arrays during acute porcine experiments (N = 9; 44.92 kg ± 8.49 kg) and maintained electrode contact with the gastroduodenal serosa. Simultaneous gastric and duodenal slow waves were filtered independently after determining suitable organ-specific filters. Validated algorithms calculated slow wave propagation patterns and quantitative descriptions. RESULTS: Butterworth filters, with cut-off frequencies (0.0167 - 2) Hz and (0.167 - 3.33) Hz, were optimal filters for gastric and intestinal slow wave signals, respectively. Antral slow waves had a frequency of (2.76 ± 0.37) cpm, velocity of (4.83 ± 0.21) mm·s-1, and amplitude of (1.13 ± 0.24) mV, before terminating at the quiescent pylorus that was (46.54 ± 5.73) mm wide. Duodenal slow waves had a frequency of (18.13 ± 0.56) cpm, velocity of (11.66 ± 1.36) mm·s-1, amplitude of (0.32 ± 0.03) mV, and originated from a pacemaker region (7.24 ± 4.70) mm distal to the quiescent zone. CONCLUSION: Novel engineering methods enable measurement of in vivo electrical activity across the gastroduodenal junction and provide qualitative and quantitative definitions of slow wave activity. SIGNIFICANCE: The pylorus is a clinical target for a range of gastrointestinal motility disorders and this work may inform diagnostic and treatment practices.


Assuntos
Motilidade Gastrointestinal , Marca-Passo Artificial , Animais , Suínos , Motilidade Gastrointestinal/fisiologia , Estômago/fisiologia , Eletrodos , Processamento de Sinais Assistido por Computador
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 377-380, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086449

RESUMO

Rhythmic bioelectrical 'slow waves' are a key regulatory mechanism underpinning digestion. The pyloric sphincter separates the independent slow wave and contractile behavior of the stomach and small intestine, while also regulating gastric emptying. In this study, we develop and validate anatomically-specific electrode cradles and analysis techniques in pigs, to map in vivo slow wave activation across this critical pylorus region for the first time. 3D printed electrode cradles were developed from reconstructions of magnetic resonance images, to accurately capture anatomical geometry. A low-pass Savitzky-Golay filter with an equivalent cut-off frequency of ~2 Hz was chosen as the optimal filter for analysis of both gastric and intestinal slow waves. Slow waves in the terminal antrum occurred with a frequency of (2.81±0.55) cycles per minute (cpm), velocity of (5.04 ± 0.29) mm s-1, and amplitude of (1.38±0.37) mV, before terminating at a zone of quiescence at the pylorus that was (41.22±7.4)nm wide. The proximal duodenal pacemaker initiated slow waves at a frequency of (18.1±0.80) cpm, velocity of (11.3±2.4) mm s-1, and amplitude of (0.376±0.027) mV. This work enables quantitative definitions of numerous physiological features of the in vivo pylorus region, including the electrically quiescent zone and duodenal pacemaker location. Clinical Relevance- This work establishes a novel method for in vivo measurement of bioelectrical slow wave activity of the pyloric region, which is a key target for physiological investigation and clinical intervention. In the future, the methods developed here may inform diagnosis and/or treatment of functional gastrointestinal disorders.


Assuntos
Duodeno , Estômago , Animais , Duodeno/diagnóstico por imagem , Duodeno/fisiologia , Eletrodos , Contração Muscular/fisiologia , Impressão Tridimensional , Estômago/diagnóstico por imagem , Estômago/fisiologia , Suínos
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5259-5262, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019170

RESUMO

Gastric ablation is emerging as a potential therapy for electrical dysrhythmias associated with gastric disorders. Thermal conduction properties of gastric tissue during ablation have not yet been defined, but are necessary for optimizing the technique and translating ablation to clinical therapy. We developed custom needle-based transmural temperature probes to quantify the temperature of gastric tissue during ablation. These probes were applied in vivo in pigs (n=5), during gastric ablation (70 °C, 10 s duration), at distances of 2.5 - 20 mm from the ablation catheter tip. Thermal response of the tissue was non-linear; the maximum temperature increase from baseline (33.3 ± 1.0 °C) was observed at the closest temperature probe to the catheter tip (2.5 mm, 14.9 °C), and temperature change decreased with distance from the catheter tip. Probes positioned between 5 -20 mm from the catheter tip recorded temperature increases of less than 5.6 °C. This study provides methods for monitoring temperature during in vivo ablation, and demonstrates that functional temperature increases from ablation were restricted to within approximately 5 mm of the catheter. These methods can now be applied to optimize effective ablation parameters, and to inform models of gastric ablation.


Assuntos
Ablação por Cateter , Animais , Primeiros Socorros , Suínos , Temperatura , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA