Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Org Biomol Chem ; 17(12): 3218-3224, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30840013

RESUMO

The capacity of hydrazone bonds to readily undergo component exchange processes sees their extensive utilization in dynamic combinatorial chemistry. The kinetics of hydrazone exchange are optimal at pH ∼4.5, which limits the use of hydrazone-based dynamic combinatorial libraries, particularly for biological targets which are only stable at near-neutral pH values. It would thus be advantageous if hydrazone exchange proceeded with faster rates at pH values closer to neutral. We experimentally and computationally evaluated the hypothesis that hydrazones possessing neighbouring acidic or basic functional groups within the carbonyl-derived moitety of the hydrazone would enhance exchange rates. Our work suggests that judiciously placed N- or O-hydrogen bond acceptors within the carbonyl-derived moiety of the hydrazone stabilize transition states via hydrogen bonding interactions, providing a valuable boost to exchange kinetics at near-neutral pH values. We anticipate these findings will be of interest in dynamic combinatorial chemistry, dynamic covalent polymers/materials, functionalized nanoparticles and interlocked molecules, all of which may benefit from hydrazone exchange processes able to operate at near-neutral pH values.

2.
Biofouling ; 33(10): 892-903, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29083230

RESUMO

Zwitterionic materials display antifouling promise, but their potential in marine anti-biofouling is still largely unexplored. This study evaluates the effectiveness of incorporating small quantities (0-20% on a molar basis) of zwitterions as sulfobetaine methacrylate (SBMA) or carboxybetaine methacrylate (CBMA) into lauryl methacrylate-based coatings whose relatively hydrophobic nature encourages adhesion of the diatom Navicula incerta, a common microfouling organism responsible for the formation of 'slime'. This approach allows potential enhancements in antifouling afforded by zwitterion incorporation to be easily quantified. The results suggest that the incorporation of CBMA does provide a relatively minor enhancement in fouling-release performance, in contrast to SBMA which does not display any enhancement. Studies with coatings incorporating mixtures of varying ratios of the cationic monomer [2-(methacryloyloxy)ethyl]trimethylammonium chloride and the anionic monomer (3-sulfopropyl)methacrylate, which offer a potentially lower cost approach to the incorporation of anionic and cationic charge, suggest these monomers impart little significant effect on biofouling.


Assuntos
Betaína/análogos & derivados , Incrustação Biológica/prevenção & controle , Diatomáceas/efeitos dos fármacos , Metacrilatos/farmacologia , Polímeros/farmacologia , Betaína/química , Betaína/farmacologia , Diatomáceas/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polímeros/química , Propriedades de Superfície
3.
Nanomedicine ; 11(3): 579-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25661921

RESUMO

In vitro drug allergy tests have limited sensitivity, partly due to a poor understanding of the immunological recognition of in vitro drug-protein conjugates. We have designed and synthesized multivalent mono- and bi-epitope dendrimeric antigen (DeAn) conjugates and studied their chemical and tridimensional structures. We describe differences in the spatial distribution and conformation of these conjugated epitopes for the first time: a partially hidden benzylpenicilloyl and a more exposed amoxicilloyl. Our data suggest that DeAn conjugates provide a useful model for studying IgE recognition in patients who suffer from an allergic reaction to benzylpenicillin and/or amoxicillin. 1D and 2D NMR, MDS and immunochemical studies provide evidence that both antigen composition and tridimensional distribution play key roles in IgE-antigen recognition. Bi-epitope DeAn conjugates could potentially allow the diagnosis of patients allergic to any of these two drugs with a single test and represent the basis for a broadly-applicable in vitro assay. From the clinical editor: The prevalence of allergic drug reactions is rising and there is an imperative need to identify patients at risk. In this interesting and important article, the authors developed a novel method for detecting drug specific IgE antibodies, responsible for allergic reactions, by using multivalent mono- and bi-epitope Dendrimeric Antigen (DeAn) conjugates. The continued success of this research may pave way of eventual development of a simple diagnostic test.


Assuntos
Amoxicilina/química , Dendrímeros/química , Hipersensibilidade a Drogas/imunologia , Epitopos/química , Imunoglobulina E/química , Penicilina G/química , Amoxicilina/imunologia , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina E/imunologia , Masculino , Penicilina G/imunologia
4.
Chempluschem ; 85(4): 689-693, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32253834

RESUMO

The preparation and characterization of new functional materials for sensing have an important role in clinical diagnosis. Monitoring the surface functionalization of functional material is crucial because the final sensing properties are affected by how the (bio)molecules are immobilized on the surface of solid supports. Here, a new approach for the preparation of functional materials for biomedical diagnosis was developed. This method employs a fluorescent dye comprising 4-amino-1,8-naphthalimide with two orthogonal functional groups suitable for click chemistry. The orthogonal reactivity of these groups allows the sequential functionalization of the fluorophore, firstly with (bio)molecules, and then binding of the (bio)molecule-naphthalimide macrostructure onto the surface of a solid support. The fluorescent properties confirm the immobilization of the (bio)molecule on the surface of the solid support, without requiring other indirect methods to verify the immobilization. These functional materials were tested successfully with sera of patients, thus proving their potential application for allergic drug diagnosis.


Assuntos
Hipersensibilidade a Drogas/diagnóstico , Corantes Fluorescentes/química , Naftalimidas/química , Química Click , Corantes Fluorescentes/síntese química , Humanos , Naftalimidas/síntese química
5.
J Mater Chem B ; 5(35): 7262-7266, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264175

RESUMO

We report the development of a tuneable plasmonic nanochain immunoassay with increased sensitivity over traditional monodisperse nanoparticle lateral flow tests. Our approach takes advantage of the unique self-assembling properties of polyamidoamine dendrimers with gold nanoparticles in aqueous media to create one-dimensional nanochains, with a distinct red to blue colour change, attributable to a longitudinal plasmon resonance, which can be readily detected by eye and a digital camera. We optimise and characterise nanochain formation and stability using UV-visible spectroscopy, transmission electron microscopy and dynamic light scattering. As a proof-of-principle we focus on the application of nanochains for point-of-care diagnostics for p24, an important biomarker of early HIV infections and successfully detect p24 with a limit of detection of 5 ng ml-1 in pseudo-serum, 4 fold more sensitive than comparable studies with gold nanoparticles. These findings and underlying concepts highlight the potential of advanced functional organic-inorganic composite nanomaterials to diagnose infections, with broad applicability to non-communicable diseases.

6.
ACS Macro Lett ; 6(9): 903-907, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35650888

RESUMO

Methods to analyze and compare biomacromolecular surfaces are still in their relative infancy on account of the challenges involved in comparing surfaces computationally. We describe a systems chemistry approach that utilizes polymer-scaffolded dynamic combinatorial libraries to experimentally probe biomacromolecular surfaces in aqueous solution which provides feedback as to the nature of the surfaces, allowing the comparison of three globular proteins and a nucleic acid.

7.
PLoS One ; 6(1): e15866, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253588

RESUMO

Ras proteins are crucial players in differentiation and oncogenesis and constitute important drug targets. The localization and activity of Ras proteins are highly dependent on posttranslational modifications at their C-termini. In addition to an isoprenylated cysteine, H-Ras, but not other Ras proteins, possesses two cysteine residues (C181 and C184) in the C-terminal hypervariable domain that act as palmitoylation sites in cells. Cyclopentenone prostaglandins (cyPG) are reactive lipidic mediators that covalently bind to H-Ras and activate H-Ras dependent pathways. Dienone cyPG, such as 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) and Δ(12)-PGJ(2) selectively bind to the H-Ras hypervariable domain. Here we show that these cyPG bind simultaneously C181 and C184 of H-Ras, thus potentially altering the conformational tendencies of the hypervariable domain. Based on these results, we have explored the capacity of several bifunctional cysteine reactive small molecules to bind to the hypervariable domain of H-Ras proteins. Interestingly, phenylarsine oxide (PAO), a widely used tyrosine phosphatase inhibitor, and dibromobimane, a cross-linking agent used for cysteine mapping, effectively bind H-Ras hypervariable domain. The interaction of PAO with H-Ras takes place in vitro and in cells and blocks modification of H-Ras by 15d-PGJ(2). Moreover, PAO treatment selectively alters H-Ras membrane partition and the pattern of H-Ras activation in cells, from the plasma membrane to endomembranes. These results identify H-Ras as a novel target for PAO. More importantly, these observations reveal that small molecules or reactive intermediates interacting with spatially vicinal cysteines induce intramolecular cross-linking of H-Ras C-terminus potentially contributing to the modulation of Ras-dependent pathways.


Assuntos
Prostaglandinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Animais , Arsenicais/metabolismo , Sítios de Ligação , Compostos Bicíclicos com Pontes/metabolismo , Linhagem Celular , Reagentes de Ligações Cruzadas , Ciclopentanos , Cisteína/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteínas ras/metabolismo
8.
Curr Opin Allergy Clin Immunol ; 10(4): 297-302, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20485158

RESUMO

PURPOSE OF REVIEW: We provide an overview of the application of the concepts of nanoscience and nanotechnology as a novel scientific approach to the area of nanomedicine related to the domain of the immune system. Particular emphasis will be paid to studies on drug allergy reactions. RECENT FINDINGS: Several well defined chemical structures arranged in the dimension of the nanoscale are currently being studied for biomedical purposes. By interacting with the immune system, some of these show promising applications as vaccines, diagnostic tools and activators/effectors of the immune response. Even a brief listing of some key applications of nanostructured materials shows how broad and intense this area of nanomedicine is. SUMMARY: As a result of the development of nanoscience and nanotechnology applied to medicine, new approaches can be envisioned for problems related to the modulation of the immune response, as well as in immunodiagnosis, and to design new tools to solve related medical challenges. Nanoparticles offer unique advantages with which to exploit new properties and for materials to play a major role in new diagnostic techniques and therapies. Fullerene-C60 and multivalent functionalized gold nanoparticles of various sizes have led to new tools and opened up new ways to study and interact with the immune system. Some of the most versatile nanostructures are dendrimers. In their interaction with the immune system they can naturally occurring macromolecules, taking advantage of the fact that dendrimers can be synthesized into nanosized structures. Their multivalence can be successfully exploited in vaccines and diagnostic tests for allergic reactions.


Assuntos
Hipersensibilidade , Nanomedicina/métodos , Nanotecnologia/métodos , Dendrímeros/administração & dosagem , Dendrímeros/química , Sistemas de Liberação de Medicamentos , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/tratamento farmacológico , Hipersensibilidade a Drogas/imunologia , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Nanopartículas/administração & dosagem , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA