Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 120(3): 626-35, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22613794

RESUMO

Platelets are megakaryocyte subfragments that participate in hemostatic and host defense reactions and deliver pro- and antiangiogenic factors throughout the vascular system. Although they are anucleated cells that lack a complex secretory apparatus with distinct Golgi/endoplasmic reticulum compartments, past studies have shown that platelets have glycosyltransferase activities. In the present study, we show that members of 3 distinct glycosyltransferase families are found within and on the surface of platelets. Immunocytology and flow cytometry results indicated that megakaryocytes package these Golgi-derived glycosyltransferases into vesicles that are sent via proplatelets to nascent platelets, where they accumulate. These glycosyltransferases are active, and intact platelets glycosylate large exogenous substrates. Furthermore, we show that activation of platelets results in the release of soluble glycosyltransferase activities and that platelets contain sufficient levels of sugar nucleotides for detection of glycosylation of exogenously added substrates. Therefore, the results of the present study show that blood platelets are a rich source of both glycosyltransferases and donor sugar substrates that can be released to function in the extracellular space. This platelet-glycosylation machinery offers a pathway to a simple glycoengineering strategy improving storage of platelets and may serve hitherto unknown biologic functions.


Assuntos
Plaquetas/enzimologia , Glicosiltransferases/metabolismo , Megacariócitos/enzimologia , Família Multigênica/fisiologia , Animais , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glicosilação , Complexo de Golgi/enzimologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Plasma Rico em Plaquetas/citologia , Sialiltransferases/genética , Sialiltransferases/metabolismo , Especificidade por Substrato/fisiologia , Polipeptídeo N-Acetilgalactosaminiltransferase
2.
Blood ; 119(5): 1263-73, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22101895

RESUMO

When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17(ΔZn/ΔZn) platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage.


Assuntos
Plaquetas/fisiologia , Glicoproteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Neuraminidase/metabolismo , Refrigeração , Proteínas ADAM/metabolismo , Proteínas ADAM/fisiologia , Proteína ADAM17 , Animais , Plaquetas/metabolismo , Preservação de Sangue/métodos , Ativação Enzimática , Glicosilação , Humanos , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiologia , Metaloproteases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Refrigeração/métodos , Fator de von Willebrand/metabolismo
3.
Blood ; 114(8): 1645-54, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19520807

RESUMO

Although surface sialic acid is considered a key determinant for the survival of circulating blood cells and glycoproteins, its role in platelet circulation lifetime is not fully clarified. We show that thrombocytopenia in mice deficient in the St3gal4 sialyltransferase gene (St3Gal-IV(-/-) mice) is caused by the recognition of terminal galactose residues exposed on the platelet surface in the absence of sialylation. This results in accelerated platelet clearance by asialoglycoprotein receptor-expressing scavenger cells, a mechanism that was recently shown to induce thrombocytopenia during Streptococcus pneumoniae sepsis. We now identify platelet GPIbalpha as a major counterreceptor on ST3Gal-IV(-/-) platelets for asialoglycoprotein receptors. Moreover, we report data that establish the importance of sialylation of the von Willebrand factor in its function.


Assuntos
Receptor de Asialoglicoproteína/fisiologia , Plaquetas/efeitos dos fármacos , Galactose/farmacologia , Hepatócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Ácido N-Acetilneuramínico/farmacologia , Animais , Receptor de Asialoglicoproteína/genética , Plaquetas/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sialiltransferases/genética , Sialiltransferases/fisiologia , Fatores de Tempo , beta-Galactosídeo alfa-2,3-Sialiltransferase
4.
BMC Cancer ; 11: 529, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22208948

RESUMO

BACKGROUND: The biological mechanisms underlying cancer cell motility and invasiveness remain unclear, although it has been hypothesized that they involve some type of epithelial-mesenchymal transition (EMT). METHODS: We used xenograft models of human cancer cells in immunocompromised mice, profiling the harvested tumors separately with species-specific probes and computationally analyzing the results. RESULTS: Here we show that human cancer cells express in vivo a precise multi-cancer invasion-associated gene expression signature that prominently includes many EMT markers, among them the transcription factor Slug, fibronectin, and α-SMA. We found that human, but not mouse, cells express the signature and Slug is the only upregulated EMT-inducing transcription factor. The signature is also present in samples from many publicly available cancer gene expression datasets, suggesting that it is produced by the cancer cells themselves in multiple cancer types, including nonepithelial cancers such as neuroblastoma. Furthermore, we found that the presence of the signature in human xenografted cells was associated with a downregulation of adipocyte markers in the mouse tissue adjacent to the invasive tumor, suggesting that the signature is triggered by contextual microenvironmental interactions when the cancer cells encounter adipocytes, as previously reported. CONCLUSIONS: The known, precise and consistent gene composition of this cancer mesenchymal transition signature, particularly when combined with simultaneous analysis of the adjacent microenvironment, provides unique opportunities for shedding light on the underlying mechanisms of cancer invasiveness as well as identifying potential diagnostic markers and targets for metastasis-inhibiting therapeutics.


Assuntos
Transição Epitelial-Mesenquimal/genética , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Colágeno Tipo XI/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Análise em Microsséries , Invasividade Neoplásica/genética , Neoplasias/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Transcrição da Família Snail , Especificidade da Espécie
5.
Transfus Apher Sci ; 42(1): 63-70, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19932055

RESUMO

Storage at room temperature is limited to 5 days because of the risk of bacterial growth and loss of platelet functionality. Platelet refrigeration remains impossible, because once chilled, platelets are rapidly removed from circulation. Chilling platelets (<4h) clusters glycoprotein (GP) Ibalpha receptors, and beta(2) integrins on hepatic macrophages recognize clustered beta GlcNAc residues leading to rapid clearance of acutely chilled platelets. Prolonged refrigeration increases the exposure of galactose residues such that, unexpectedly, hepatocytes remove platelets using their asialoglycoprotein receptors. Here we review current knowledge of the mechanisms of platelet removal, the existing knowledge of refrigerated platelet function, and methods to preserve platelet concentrates long-term for transfusion.


Assuntos
Plaquetas/citologia , Preservação de Sangue/métodos , Temperatura Baixa , Hepatócitos/fisiologia , Fagocitose/fisiologia , Transfusão de Plaquetas , Refrigeração , Animais , Receptor de Asialoglicoproteína/metabolismo , Plaquetas/fisiologia , Forma Celular , Sobrevivência Celular , Galactose/metabolismo , Humanos , Lectinas/fisiologia , Camundongos , Ativação Plaquetária , Contagem de Plaquetas , Glicoproteínas da Membrana de Plaquetas/metabolismo , Fatores de Tempo
6.
Nat Med ; 15(11): 1273-80, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19783995

RESUMO

Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage beta(2) integrin binding to beta-N-acetylglucosamine (beta-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the beta-GlcNAc moieties by galactosylation prevents clearance of short-term-cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both beta(2) integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Plaquetas/fisiologia , Temperatura Baixa , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacologia , Animais , Assialoglicoproteínas/farmacologia , Remoção de Componentes Sanguíneos , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Preservação de Sangue/métodos , Transfusão de Sangue/métodos , Antígenos CD18/metabolismo , Configuração de Carboidratos , Linhagem Celular Transformada , Citometria de Fluxo , Galactose/metabolismo , Glicosilação , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Fragmentos de Peptídeos/farmacologia , Fagócitos/efeitos dos fármacos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Refrigeração/métodos , Fatores de Tempo , alfa-Fetoproteínas/farmacologia
7.
Blood ; 111(6): 3249-56, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18096766

RESUMO

Cold storage of platelets for transfusion is desirable to extend platelet storage times and to prevent bacterial growth. However, the rapid clearance of cold-stored platelets prevents their use. A novel method for preventing the rapid clearance of cold-stored platelets has previously been developed in a murine model. Cold storage induces the clustering and recognition of exposed beta-N-acetylglucosamine (betaGlcNAc) on platelet surfaces. Glycosylation of betaGlcNAc residues with uridine 5'-diphosphogalactose (UDP-galactose) results in the normal survival of short-term (2 h) 0 degrees C-stored murine platelets. Based on this finding, we developed a similar glycosylation process by adding UDP-galactose to human apheresis platelets. A phase 1 clinical trial was conducted transfusing radiolabeled autologous apheresis platelets stored for 48 hours at 4 degrees C with or without pretreatment with UDP-galactose. In contrast to the murine study, galactosylation of human platelets did not prevent the accelerated platelet clearance routinely observed after 4 degrees C storage. We next developed a murine model of platelet storage for 48 hours at 4 degrees C and showed that UDP-galactose treatment of murine platelets also did not prevent their rapid clearance, in agreement with the human platelet study. We conclude that different mechanisms of clearance may exist for short- and long-term cold-stored platelets.


Assuntos
Plaquetas/citologia , Plaquetas/metabolismo , Preservação de Sangue/métodos , Temperatura Baixa , Galactose/metabolismo , Animais , Remoção de Componentes Sanguíneos , Plaquetas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Galactose/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transfusão de Plaquetas , Fatores de Tempo , Uridina Difosfato Galactose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA