Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 121(6): 3238-3270, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33410674

RESUMO

Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.


Assuntos
Antivirais/química , Inibidores Enzimáticos/química , Preparações Farmacêuticas/química , Proteínas Virais/química , Viroses/tratamento farmacológico , Antivirais/metabolismo , Antivirais/farmacologia , Biologia Computacional , Desenho de Fármacos , Farmacorresistência Viral , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Aprendizado de Máquina , Mutação , Orthomyxoviridae/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
2.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298600

RESUMO

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a Ki value of 2.9 µM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV.IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti, continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors provide novel scaffolds that enable exploiting the prime side of the protease active site, with the aim of achieving better specificity and lower hydrophilicity than those of current scaffolds in the design of antiflaviviral inhibitors.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Inibidores de Proteases/farmacologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Antivirais/síntese química , Antivirais/metabolismo , Aprotinina/química , Aprotinina/metabolismo , Aprotinina/farmacologia , Domínio Catalítico , Simulação por Computador , Vírus da Dengue/química , Vírus da Dengue/enzimologia , Descoberta de Drogas/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Peptídeos Cíclicos/síntese química , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Ligação Proteica , Proteínas não Estruturais Virais/química
3.
Org Biomol Chem ; 12(35): 6842-54, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25050776

RESUMO

A series of potent macrocyclic HIV-1 protease inhibitors have been designed and synthesized. The compounds incorporated 16- to 19-membered macrocyclic rings between a nelfinavir-like P2 ligand and a tyrosine side chain containing a hydroxyethylamine sulfonamide isostere. All cyclic inhibitors are more potent than their corresponding acyclic counterparts. Saturated derivatives showed slight reduction of potency compared to the respective unsaturated derivatives. Compound containing a 16-membered ring as the P1-P2 ligand showed the most potent enzyme inhibitory and antiviral activity.


Assuntos
Inibidores da Protease de HIV/química , Nelfinavir/química , Sulfonamidas/química , Antivirais/síntese química , Domínio Catalítico , Linhagem Celular , Darunavir , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , HIV-1/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tirosina/química
4.
Eur J Med Chem ; 257: 115501, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37244161

RESUMO

Protease inhibitors are the most potent antivirals against HIV-1, but they still lose efficacy against resistant variants. Improving the resistance profile is key to developing more robust inhibitors, which may be promising candidates for simplified next-generation antiretroviral therapies. In this study, we explored analogs of darunavir with a P1 phosphonate modification in combination with increasing size of the P1' hydrophobic group and various P2' moieties to improve potency against resistant variants. The phosphonate moiety substantially improved potency against highly mutated and resistant HIV-1 protease variants, but only when combined with more hydrophobic moieties at the P1' and P2' positions. Phosphonate analogs with a larger hydrophobic P1' moiety maintained excellent antiviral potency against a panel of highly resistant HIV-1 variants, with significantly improved resistance profiles. The cocrystal structures indicate that the phosphonate moiety makes extensive hydrophobic interactions with the protease, especially with the flap residues. Many residues involved in these protease-inhibitor interactions are conserved, enabling the inhibitors to maintain potency against highly resistant variants. These results highlight the need to balance inhibitor physicochemical properties by simultaneous modification of chemical groups to further improve resistance profiles.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/química , Darunavir/farmacologia , Peptídeo Hidrolases , Protease de HIV/genética , Cristalografia por Raios X
5.
ACS Chem Biol ; 16(3): 529-538, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33619959

RESUMO

Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that can cause severe paralytic neurologic disease and immune disorders as well as cancer. An estimated 20 million people worldwide are infected with HTLV-1, with prevalence reaching 30% in some parts of the world. In stark contrast to HIV-1, no direct acting antivirals (DAAs) exist against HTLV-1. The aspartyl protease of HTLV-1 is a dimer similar to that of HIV-1 and processes the viral polyprotein to permit viral maturation. We report that the FDA-approved HIV-1 protease inhibitor darunavir (DRV) inhibits the enzyme with 0.8 µM potency and provides a scaffold for drug design against HTLV-1. Analogs of DRV that we designed and synthesized achieved submicromolar inhibition against HTLV-1 protease and inhibited Gag processing in viral maturation assays and in a chronically HTLV-1 infected cell line. Cocrystal structures of these inhibitors with HTLV-1 protease highlight opportunities for future inhibitor design. Our results show promise toward developing highly potent HTLV-1 protease inhibitors as therapeutic agents against HTLV-1 infections.


Assuntos
Antivirais/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Darunavir/análogos & derivados , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Inibidores de Proteases/química , Sequência de Aminoácidos , Antivirais/farmacologia , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Darunavir/farmacologia , Descoberta de Drogas , Escherichia coli/genética , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Terapia de Alvo Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
6.
J Med Chem ; 63(15): 8296-8313, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32672965

RESUMO

The design, synthesis, and X-ray structural analysis of hybrid HIV-1 protease inhibitors (PIs) containing bis-tetrahydrofuran (bis-THF) in a pseudo-C2-symmetric dipeptide isostere are described. A series of PIs were synthesized by incorporating bis-THF of darunavir on either side of the Phe-Phe isostere of lopinavir in combination with hydrophobic amino acids on the opposite P2/P2' position. Structure-activity relationship studies indicated that the bis-THF moiety can be attached at either the P2 or P2' position without significantly affecting potency. However, the group on the opposite P2/P2' position had a dramatic effect on potency depending on the size and shape of the side chain. Cocrystal structures of inhibitors with wild-type HIV-1 protease revealed that the bis-THF moiety retained similar interactions as observed in the darunavir-protease complex regardless of the position on the Phe-Phe isostere. Analyses of cocrystal structures and molecular dynamics simulations provide insights into optimizing HIV-1 PIs containing bis-THF in non-sulfonamide dipeptide isosteres.


Assuntos
Furanos/química , Furanos/farmacologia , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/enzimologia , Cristalografia por Raios X , Darunavir/análogos & derivados , Darunavir/farmacologia , Dipeptídeos/química , Dipeptídeos/farmacologia , Desenho de Fármacos , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Protease de HIV/química , HIV-1/efeitos dos fármacos , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
7.
J Med Chem ; 62(17): 8062-8079, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386368

RESUMO

A structure-guided design strategy was used to improve the resistance profile of HIV-1 protease inhibitors by optimizing hydrogen bonding and van der Waals interactions with the protease while staying within the substrate envelope. Stereoisomers of 4-(1-hydroxyethyl)benzene and 4-(1,2-dihydroxyethyl)benzene moieties were explored as P2' ligands providing pairs of diastereoisomers epimeric at P2', which exhibited distinct potency profiles depending on the configuration of the hydroxyl group and size of the P1' group. While compounds with the 4-(1-hydroxyethyl)benzene P2' moiety maintained excellent antiviral potency against a panel of multidrug-resistant HIV-1 strains, analogues with the polar 4-(1,2-dihydroxyethyl)benzene moiety were less potent, and only the (R)-epimer incorporating a larger 2-ethylbutyl P1' group showed improved potency. Crystal structures of protease-inhibitor complexes revealed strong hydrogen bonding interactions of both (R)- and (S)-stereoisomers of the hydroxyethyl group with Asp30'. Notably, the (R)-dihydroxyethyl group was involved in a unique pattern of direct hydrogen bonding interactions with the backbone amides of Asp29' and Asp30'. The SAR data and analysis of crystal structures provide insights for optimizing these promising HIV-1 protease inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Células HEK293 , Protease de HIV/química , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/química , HIV-1/enzimologia , Humanos , Ligação de Hidrogênio , Ligantes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
8.
ACS Infect Dis ; 5(2): 316-325, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30543749

RESUMO

HIV-1 protease is one of the prime targets of agents used in antiretroviral therapy against HIV. However, under selective pressure of protease inhibitors, primary mutations at the active site weaken inhibitor binding to confer resistance. Darunavir (DRV) is the most potent HIV-1 protease inhibitor in clinic; resistance is limited, as DRV fits well within the substrate envelope. Nevertheless, resistance is observed due to hydrophobic changes at residues including I50, V82, and I84 that line the S1/S1' pocket within the active site. Through enzyme inhibition assays and a series of 12 crystal structures, we interrogated susceptibility of DRV and two potent analogues to primary S1' mutations. The analogues had modifications at the hydrophobic P1' moiety compared to DRV to better occupy the unexploited space in the S1' pocket where the primary mutations were located. Considerable losses of potency were observed against protease variants with I84V and I50V mutations for all three inhibitors. The crystal structures revealed an unexpected conformational change in the flap region of I50V protease bound to the analogue with the largest P1' moiety, indicating interdependency between the S1' subsite and the flap region. Collective analysis of protease-inhibitor interactions in the crystal structures using principle component analysis was able to distinguish inhibitor identity and relative potency solely based on van der Waals contacts. Our results reveal the complexity of the interplay between inhibitor P1' moiety and S1' mutations and validate principle component analyses as a useful tool for distinguishing resistance and inhibitor potency.


Assuntos
Darunavir/análogos & derivados , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Darunavir/química , HIV-1/enzimologia , Humanos , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade por Substrato
9.
ACS Med Chem Lett ; 9(7): 691-696, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034602

RESUMO

A series of linear HCV NS3/4A protease inhibitors was designed by eliminating the P2-P4 macrocyclic linker in grazoprevir, which, in addition to conferring conformational flexibility, allowed structure-activity relationship (SAR) exploration of diverse quinoxalines at the P2 position. Biochemical and replicon data indicated preference for small hydrophobic groups at the 3-position of P2 quinoxaline for maintaining potency against resistant variants R155K, A156T, and D168A/V. The linear inhibitors, though generally less potent than the corresponding macrocyclic analogues, were relatively easier to synthesize and less susceptible to drug resistance. Three inhibitor cocrystal structures bound to wild-type NS3/4A protease revealed a conformation with subtle changes in the binding of P2 quinoxaline, depending on the 3-position substituent, likely impacting both inhibitor potency and resistance profile. The SAR and structural analysis highlight inhibitor features that strengthen interactions of the P2 moiety with the catalytic triad residues, providing valuable insights to improve potency against resistant variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA