Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 588(Pt 11): 1961-83, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20308252

RESUMO

Rates of ATPase and glycolysis are several times faster in actively contracting mouse extensor digitorum longus muscle (EDL) than soleus (SOL), but we find these rates are not distinguishable at rest. We used a transient anoxic perturbation of steady state energy balance to decrease phosphocreatine (PCr) reversibly and to measure the rates of ATPase and of lactate production without muscle activation or contraction. The rate of glycolytic ATP synthesis is less than the ATPase rate, accounting for the continual PCr decrease during anoxia in both muscles. We fitted a mathematical model validated with properties of enzymes and solutes measured in vitro and appropriate for the transient perturbation of these muscles to experimental data to test whether the model accounts for the results. Simulations showed equal rates of ATPase and lactate production in both muscles. ATPase controls glycolytic flux by feedback from its products. Adenylate kinase function is critical because a rise in [AMP] is necessary to activate glycogen phosphorylase. ATPase is the primary source of H+ production. The sum of contributions of the 13 reactions of the glycogenolytic and glycolytic network to total proton load is negligible. The stoichiometry of lactate and H+ production is near unity. These results identify a default state of energy metabolism for resting muscle in which there is no difference in the metabolic phenotype of EDL and SOL. Therefore, additional control mechanisms, involving higher ATPase flux and [Ca2+], must exist to explain the well-known difference in glycolytic rates in fast-twitch and slow-twitch muscles in actively contracting muscle.


Assuntos
Adenosina Trifosfatases/metabolismo , Glicólise/fisiologia , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Difosfato de Adenosina/metabolismo , Aerobiose , Algoritmos , Animais , Transporte Biológico Ativo/genética , Transporte Biológico Ativo/fisiologia , Dióxido de Carbono/metabolismo , Simulação por Computador , Hidrogênio/metabolismo , Hipóxia/enzimologia , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/enzimologia , Consumo de Oxigênio/fisiologia , Fenótipo , Fosfocreatina/metabolismo , Fosforilase b/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA