Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioconjug Chem ; 33(8): 1494-1504, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35875886

RESUMO

Recombinantly produced biotherapeutics hold promise for improving the current standard of care for snakebite envenoming over conventional serotherapy. Nanobodies have performed well in the clinic, and in the context of antivenom, they have shown the ability to neutralize long α-neurotoxins in vivo. Here, we showcase a protein engineering approach to increase the valence and hydrodynamic size of neutralizing nanobodies raised against a long α-neurotoxin (α-cobratoxin) from the venom of the monocled cobraNaja kaouthia. Based on the p53 tetramerization domain, a panel of anti-α-cobratoxin nanobody-p53 fusion proteins, termed Quads, were produced with different valences, inclusion or exclusion of Fc regions for endosomal recycling purposes, hydrodynamic sizes, and spatial arrangements, comprising up to 16 binding sites. Measurements of binding affinity and stoichiometry showed that the nanobody binding affinity was retained when incorporated into the Quad scaffold, and all nanobody domains were accessible for toxin binding, subsequently displaying increased blocking potency in vitro compared to the monomeric format. Moreover, functional assessment using automated patch-clamp assays demonstrated that the nanobody and Quads displayed neutralizing effects against long α-neurotoxins from both N. kaouthia and the forest cobra N. melanoleuca. This engineering approach offers a means of altering the valence, endosomal recyclability, and hydrodynamic size of existing nanobody-based therapeutics in a simple plug-and-play fashion and can thus serve as a technology for researchers tailoring therapeutic properties for improved neutralization of soluble targets such as snake toxins.


Assuntos
Elapidae , Anticorpos de Domínio Único , Animais , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Elapidae/metabolismo , Neurotoxinas/química , Neurotoxinas/metabolismo , Anticorpos de Domínio Único/metabolismo , Proteína Supressora de Tumor p53/metabolismo
2.
Brain Behav Immun ; 80: 909-915, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31078689

RESUMO

BACKGROUND: During last years, there has been an intensive search for blood biomarkers in schizophrenia to assist in diagnosis, prognosis and clinical management of the disease. METHODS: In this study, we first conducted a weighted gene coexpression network analysis to address differentially expressed genes in peripheral blood from patients with chronic schizophrenia (n = 30) and healthy controls (n = 15). The discriminating performance of the candidate genes was further tested in an independent cohort of patients with first-episode schizophrenia (n = 124) and healthy controls (n = 54), and in postmortem brain samples (cingulate and prefrontal cortices) from patients with schizophrenia (n = 34) and healthy controls (n = 35). RESULTS: The expression of the Eukaryotic Translation Initiation Factor 2D (EIF2D) gene, which is involved in protein synthesis regulation, was increased in the chronic patients of schizophrenia. On the contrary, the expression of the Thymocyte Selection-Associated High Mobility Group Box (TOX) gene, involved in immune function, was reduced. EIF2D expression was also altered in first-episode schizophrenia patients, but showing reduced levels. Any of the postmortem brain areas studied did not show differences of expression of both genes. CONCLUSIONS: EIF2D and TOX are putative blood markers of chronic patients of schizophrenia, which expression change from the onset to the chronic disease, unraveling new biological pathways that can be used for the development of new intervention strategies in the diagnosis and prognosis of schizophrenia disease.


Assuntos
Fator de Iniciação 2 em Eucariotos/genética , Proteínas de Grupo de Alta Mobilidade/genética , Esquizofrenia/genética , Adulto , Biomarcadores/sangue , Encéfalo/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Expressão Gênica/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Prognóstico , Fatores de Tempo , Transcriptoma/genética
3.
Nat Commun ; 15(1): 2007, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453922

RESUMO

Monoclonal IgG antibodies constitute the fastest growing class of therapeutics. Thus, there is an intense interest to design more potent antibody formats, where long plasma half-life is a commercially competitive differentiator affecting dosing, frequency of administration and thereby potentially patient compliance. Here, we report on an Fc-engineered variant with three amino acid substitutions Q311R/M428E/N434W (REW), that enhances plasma half-life and mucosal distribution, as well as allows for needle-free delivery across respiratory epithelial barriers in human FcRn transgenic mice. In addition, the Fc-engineered variant improves on-target complement-mediated killing of cancer cells as well as both gram-positive and gram-negative bacteria. Hence, this versatile Fc technology should be broadly applicable in antibody design aiming for long-acting prophylactic or therapeutic interventions.


Assuntos
Neoplasias , Receptores Fc , Camundongos , Animais , Humanos , Imunoglobulina G , Meia-Vida , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Camundongos Transgênicos , Anticorpos Monoclonais , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico
4.
Structure ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39146931

RESUMO

Immunoglobulin G (IgG) antibodies that bind their cognate antigen in a pH-dependent manner (acid-switched antibodies) can release their bound antigen for degradation in the acidic environment of endosomes, while the IgGs are rescued by the neonatal Fc receptor (FcRn). Thus, such IgGs can neutralize multiple antigens over time and therefore be used at lower doses than their non-pH-responsive counterparts. Here, we show that light-chain shuffling combined with phage display technology can be used to discover IgG1 antibodies with increased pH-dependent antigen binding properties, using the snake venom toxins, myotoxin II and α-cobratoxin, as examples. We reveal differences in how the selected IgG1s engage their antigens and human FcRn and show how these differences translate into distinct cellular handling properties related to their pH-dependent antigen binding phenotypes and Fc-engineering for improved FcRn binding. Our study showcases the complexity of engineering pH-dependent antigen binding IgG1s and demonstrates the effects on cellular antibody-antigen recycling.

5.
Protein Sci ; 32(12): e4821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897425

RESUMO

Recycling IgG antibodies bind to their target antigen at physiological pH in the blood stream and release them upon endocytosis when pH levels drop, allowing the IgG antibodies to be recycled into circulation via FcRn-mediated cellular pathways, while the antigens undergo lysosomal degradation. This enables recycling antibodies to achieve comparable therapeutic effect at lower doses than their non-recycling counterparts. The development of such antibodies is typically achieved by histidine doping of their variable regions or by performing in vitro antibody selection campaigns utilizing histidine doped libraries. Both are strategies that may introduce sequence liabilities. Here, we present a methodology that employs a naïve antibody phage display library, consisting of natural variable domains, to discover antibodies that bind α-cobratoxin from the venom of Naja kaouthia in a pH-dependent manner. As a result, an antibody was discovered that exhibits a 7-fold higher off-rate at pH 5.5 than pH 7.4 in bio-layer interferometry experiments. Interestingly, no histidine residues were found in its variable domains, and in addition, the antibody showed pH-dependent binding to a histidine-devoid antigen mutant. As such, the results demonstrate that pH-dependent antigen-antibody binding may not always be driven by histidine residues. By employing molecular dynamics simulations, different protonation states of titratable residues were found, which potentially could be responsible for the observed pH-dependent antigen binding properties of the antibody. Finally, given the typically high diversity of naïve antibody libraries, the methodology presented here can likely be applied to discover recycling antibodies against different targets ab initio without the need for histidine doping.


Assuntos
Bacteriófagos , Histidina , Histidina/metabolismo , Antígenos/metabolismo , Imunoglobulina G/genética , Concentração de Íons de Hidrogênio , Bacteriófagos/metabolismo , Biblioteca de Peptídeos
6.
J Invest Dermatol ; 142(5): 1391-1400.e15, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34687742

RESUMO

Developing mechanistic rationales can improve the clinical management of cutaneous T-cell lymphomas. There is considerable genetic and biological evidence of a malignant network of signaling mechanisms, highly influenced by deregulated TCR/PLCγ1 activity, controlling the biology of these lesions. In addition, activated signal transducer and activator of transcription 3 is associated with clinical progression, although the alterations responsible for this have not been fully elucidated. Here, we studied PLCγ1-dependent mechanisms that can mediate STAT3 activation and control tumor growth and progression. Downstream of PLCγ1, the pharmacological inhibition and genetic knockdown of protein kinase C theta (PKCθ) inhibited signal transducer and activator of transcription 3 activation, impaired proliferation, and promoted apoptosis in cutaneous T-cell lymphoma cells. A PKCθ-dependent transcriptome in mycosis fungoides/Sézary syndrome cells revealed potential effector genes controlling cytokine signaling, TP53, and actin cytoskeleton dynamics. Consistently, an in vivo chicken embryo model xenografted with mycosis fungoides cells showed that PKCθ blockage abrogates tumor growth and spread to distant organs. Finally, the expression of a number of PKCθ target genes found in mycosis fungoides cells significantly correlated with that of PRKCQ (PKCθ) in 81 human mycosis fungoides samples. In summary, PKCθ can play a central role in the activation of malignant cutaneous T-cell lymphoma mechanisms via multiple routes, including, but not restricted to, STAT3. These mechanisms may, in turn, serve as targets for specific therapies.


Assuntos
Linfoma Cutâneo de Células T , Micose Fungoide , Neoplasias Cutâneas , Animais , Embrião de Galinha , Linfoma Cutâneo de Células T/genética , Micose Fungoide/genética , Proteína Quinase C-theta/genética , Proteína Quinase C-theta/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/genética
7.
Transl Psychiatry ; 9(1): 306, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740729

RESUMO

A better understanding of the molecular mechanisms that participate in the development and clinical manifestations of schizophrenia can lead to improve our ability to diagnose and treat this disease. Previous data strongly associated the levels of deregulated ADAMTS2 expression in peripheral blood mononuclear cells (PBMCs) from patients at first episode of psychosis (up) as well as in clinical responders to treatment with antipsychotic drugs (down). In this current work, we performed an independent validation of such data and studied the mechanisms implicated in the control of ADAMTS2 gene expression. Using a new cohort of drug-naïve schizophrenia patients with clinical follow-up, we confirmed that the expression of ADAMTS2 was highly upregulated in PBMCs at the onset (drug-naïve patients) and downregulated, in clinical responders, after treatment with antipsychotics. Mechanistically, ADAMTS2 expression was activated by dopaminergic signalling (D1-class receptors) and downstream by cAMP/CREB and mitogen-activated protein kinase (MAPK)/ERK signalling. Incubation with antipsychotic drugs and selective PKA and MEK inhibitors abrogated D1-mediated activation of ADAMTS2 in neuronal-like cells. Thus, D1 receptors signalling towards CREB activation might participate in the onset and clinical responses to therapy in schizophrenia patients, by controlling ADAMTS2 expression and activity. The unbiased investigation of molecular mechanisms triggered by antipsychotic drugs may provide a new landscape of novel targets potentially associated with clinical efficacy.


Assuntos
Proteínas ADAMTS/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dopamina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Esquizofrenia/fisiopatologia , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , Proteínas ADAMTS/genética , Animais , Antipsicóticos/farmacologia , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Fosforilação , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transdução de Sinais
8.
Front Mol Neurosci ; 11: 73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559890

RESUMO

Antipsychotic drugs are one of the largest types of prescribed drugs and have large inter-individual differences in efficacy, but there is no methodology to predict their clinical effect. Here we show a four-gene blood expression profile to predict the response to antipsychotics in schizophrenia patients before treatment. We sequenced total mRNA from blood samples of antipsychotic naïve patients who, after 3 months of treatment, were in the top 40% with the best response (15 patients) and in the bottom 40% with the worst response (15 patients) according to the Brief Psychiatric Rating Scale (BPRS). We characterized the transcriptome before treatment of these 30 patients and found 130 genes with significant differential expression (Padj value < 0.01) associated with clinical response. Then, we used Random Forests, an ensemble learning method for classification and regression, to obtain a list of predictor genes. The expression of four genes can predict the response to antipsychotic medication with a cross-validation accuracy estimation of 0.83 and an area under the curve of 0.97 using a logistic regression. We anticipate that this approach is a gateway to select the specific antipsychotic that will produce the best response to treatment for each specific patient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA