Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Soft Matter ; 18(25): 4660-4666, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35543353

RESUMO

Shape-changing objects are prized for applications ranging from acoustics to robotics. We report sub-millimetre bubbles that reversibly and rapidly change not only their shape but also their topological class, from sphere to torus, when subjected to a simple pressure treatment. Stabilized by a solid-like film of nanoscopic protein "particles", the bubbles may persist in toroidal form for several days, most of them with the relative dimensions expected of Clifford tori. The ability to cross topological classes reversibly and quickly is enabled by the expulsion of protein from the strained surfaces in the form of submicron assemblies. Compared to structural modifications of liquid-filled vesicles, for example by slow changes in solution osmolality, the rapid inducement of shape changes in bubbles by application of pressure may hasten experimental investigations of surface mechanics, even as it suggests new routes to lightweight materials with high surface areas.


Assuntos
Pressão , Propriedades de Superfície
2.
Biomacromolecules ; 22(2): 340-352, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33275405

RESUMO

Simultaneous incorporation of cellulose nanocrystals (CNCs) and chitin nanofibers (ChNFs) into a polyvinyl alcohol (PVA) matrix opens possibilities for customization of more environmentally friendly composite materials. When used in tricomponent composite hydrogels, the opposite surface charges on CNCs and ChNFs lead to the construction of beneficial nanofiber structures. In this work, composite hydrogels containing CNCs, ChNFs, or their mixtures are produced using cyclic freeze-thaw (FT) treatments. When considering different compositions and FT cycling, tricomponent composite hydrogels containing a specific ratio of CNCs/ChNFs are shown to have promising mechanical performance in comparison to other samples. These results together with results from water absorption, rheological, and light scattering studies suggest that the CNC/ChNF structures produced property improvement by concurrently accessing the stronger interfacial interactions between CNCs and PVA and the longer lengths of the ChNFs for load transfer. Overall, these results provide insight into using electrostatically driven nanofiber structures in nanocomposites.


Assuntos
Nanofibras , Nanopartículas , Celulose , Quitina , Hidrogéis
3.
Langmuir ; 35(12): 4380-4386, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30873841

RESUMO

Hydrophobins are abundant amphipathic proteins produced by fungi. They have been interacting with oils in natural environments for millions of years; therefore, it is sensible to consider them as surfactants and dispersants for cleaning oil spills. To better understand the properties of these amphipathic proteins in seawater, a particular hydrophobin known as cerato-ulmin (CU; mass 7627 g/mol) was studied. CU is adept at forming strong membranes, as indicated by the capacity to stabilize gas-filled bubbles and oil-filled droplets with cylindrical and other nonspherical shapes. The limits of this unusual ability were tested using a wide variety of solvent conditions, including various salt solutions, alcohols, simple hydrocarbons (i.e., cyclohexane, dodecane), acids, and bases. CU concentrations ranged from 20 to 200 µg/mL. The bubbles and other structures made by CU in the presence of various gases span an enormous range of size, from nanometers to millimeters. After larger objects float to the surface, smaller structures remain, and these were found by light scattering to have a hydrodynamic diameter of ∼200 nm.


Assuntos
Proteínas Fúngicas/química , Micotoxinas/química , Óleos/química , Interações Hidrofóbicas e Hidrofílicas , Microbolhas , Tamanho da Partícula , Propriedades de Superfície
4.
Langmuir ; 35(44): 14248-14257, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31644297

RESUMO

Particles with a superparamagnetic cobalt inner core, silica outer core, and covalently bound homopolypeptide shell were investigated under thermal and magnetic stimuli. The homopolypeptide was poly(ε-carbobenzyloxy-l-lysine), PCBL, which is known to exhibit a thermoreversible coil ⇔ helix transition when dissolved as a pure polymer in m-cresol. Tethering to a core particle did not prevent PCBL from undergoing this conformational transition, as confirmed by dynamic light scattering and optical rotation, but the transition was broadened compared to that of the untethered polymer. The Co@SiO2-PCBL hybrid particles retained the superparamagnetic properties of the cobalt inner nougat. Indeed, some response remains even after aging for >5 years. The aged PCBL shell also preserved its responsiveness to temperature, although differences in the shape of the size vs temperature transition curve were observed compared to the freshly made particles. A reversible coil ⇔ helix transition for a particle-bound polypeptide in a pure organic solvent is rare. In addition to providing a convenient tool for characterizing coil ⇔ helix transitions for surface-bound polypeptides without interference from pH or the strong ionic forces that dominate behavior in aqueous systems, the Co@SiO2-PCBL/m-cresol system may prove useful in studies of the effect of shell polymer conformation on colloid interactions. The stability of the magnetic core and polypeptide shell suggest a long shelf life for Co@SiO2-PCBL, which can, in principle, be deprotected to yield positively charged Co@SiO2-poly(l-lysine) particles for possible transfection or antimicrobial applications or chained magnetically to produce responsive poly(colloids).

5.
Nature ; 483(7389): 336-40, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22398450

RESUMO

Cells are organized on length scales ranging from ångström to micrometres. However, the mechanisms by which ångström-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Transição de Fase , Proteínas/química , Proteínas/metabolismo , Transdução de Sinais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Biopolímeros/química , Biopolímeros/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Fosforilação , Domínios Proteicos Ricos em Prolina , Estrutura Quaternária de Proteína , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Domínios de Homologia de src
6.
J Proteome Res ; 16(4): 1470-1482, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28164707

RESUMO

Komodo dragons are the largest living lizards and are the apex predators in their environs. They endure numerous strains of pathogenic bacteria in their saliva and recover from wounds inflicted by other dragons, reflecting the inherent robustness of their innate immune defense. We have employed a custom bioprospecting approach combining partial de novo peptide sequencing with transcriptome assembly to identify cationic antimicrobial peptides from Komodo dragon plasma. Through these analyses, we identified 48 novel potential cationic antimicrobial peptides. All but one of the identified peptides were derived from histone proteins. The antimicrobial effectiveness of eight of these peptides was evaluated against Pseudomonas aeruginosa (ATCC 9027) and Staphylococcus aureus (ATCC 25923), with seven peptides exhibiting antimicrobial activity against both microbes and one only showing significant potency against P. aeruginosa. This study demonstrates the power and promise of our bioprospecting approach to cationic antimicrobial peptide discovery, and it reveals the presence of a plethora of novel histone-derived antimicrobial peptides in the plasma of the Komodo dragon. These findings may have broader implications regarding the role that intact histones and histone-derived peptides play in defending the host from infection. Data are available via ProteomeXChange with identifier PXD005043.


Assuntos
Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Lagartos/sangue , Transcriptoma/genética , Animais , Peptídeos Catiônicos Antimicrobianos/sangue , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos , Espectrometria de Massas , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Saliva/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
7.
Biomacromolecules ; 18(5): 1556-1562, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28296384

RESUMO

Cellulose nanocrystals (CNCs) are bioderived, rodlike particles that form a chiral nematic liquid crystal (LC) in water. In this work, CNCs were used to induce long-range order in a semiconducting polymer, poly[3-(potassium-4-butanoate) thiophene-2,5-diyl] (PPBT). When mixed with CNCs, it was found that PPBT was incorporated into the liquid crystal "template" to form ordered structures with highly birefringent domains, as observed under polarized light. We show that the π-π interactions between polymer chains, which contribute considerably to the energetics of the semiconducting system, are directly influenced by the presence and packing of the liquid crystal phase. Upon increasing the concentration of CNCs from the isotropic to chiral nematic regime, we observe a bathochromic shift in the UV-vis spectra and the emergence of the 0-0 vibrational peak, suggesting enhanced π-π stacking leading to chain coplanarization. Furthermore, the chiral nature of the PPBT/CNC mixture was evidenced by a negative peak in circular dichroism (CD) spectroscopy, promoting the notion that the polymer chains followed the helicoidal twist of the chiral nematic liquid crystal host. At high temperatures, the peak height ratios and overall intensities of the UV-vis and CD spectra associated with PPBT decreased as the chiral nematic pitch grew larger in size.


Assuntos
Celulose/análogos & derivados , Cristais Líquidos/química , Nanopartículas/química , Polímeros/química , Tiofenos/química , Interações Hidrofóbicas e Hidrofílicas , Semicondutores
8.
Langmuir ; 32(33): 8392-402, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27504929

RESUMO

Photoinduced cross-linking of unmodified proteins, PICUP, was extended to core-shell silica-polypeptide composite particles to produce poly(colloid)s. Silica particles coated with poly(l-tyrosine), PTYR-SiO2, served as the monomer units. The PICUP reaction accomplished the formation of dityrosil linkages between the tyrosine units by illumination of photo-oxidizing ruthenium(II) bipyridyl catalyst under physiological conditions. The PICUP method was compared with an enzymatic route intermediated by horseradish peroxidase as catalyst. The PTYR-SiO2 particles feature high PTYR content in the shell, which facilitated the formation of heavily cross-linked but unstructured aggregates. After magnetic alignment of superparamagnetic PTYR-SiO2-cobalt composite particles, only the PICUP approach enabled the preparation of isolated chain-like poly(colloid)s. The cross-linking products were confirmed by FTIR. The native secondary structure of poly(l-tyrosine) is preserved in these poly(colloid)s. Because the PICUP reaction does not require the modification of the polypeptide structure, the cross-linked PTYR will retain its characteristic functions as a poly(amino acid). The PICUP method opens the door to a variety of PTYR-based poly(colloid) architectures.


Assuntos
Peptídeos/química , Cobalto/química , Coloides/química , Reagentes de Ligações Cruzadas , Difusão Dinâmica da Luz , Peroxidase do Rábano Silvestre , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Processos Fotoquímicos , Polimerização , Agregados Proteicos , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Langmuir ; 32(49): 13137-13148, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951711

RESUMO

Liquid crystals can organize dispersed particles into useful and exotic structures. In the case of lyotropic cholesteric polypeptide liquid crystals, polypeptide-coated particles are appealing because the surface chemistry matches that of the polymeric mesogen, which permits a tighter focus on factors such as extended particle shape. The colloidal particles developed here consist of a magnetic and fluorescent cylindrically symmetric silica core with one rounded, almost hemispherical end. Functionalized with helical poly(γ-stearyl-l-glutamate) (PSLG), the particles were dispersed at different concentrations in cholesteric liquid crystals (ChLC) of the same polymer in tetrahydrofuran (THF). Defects introduced by the particles to the director field of the bulk PSLG/THF host led to a variety of phases. In fresh mixtures, the cholesteric mesophase of the PSLG matrix was distorted, as reflected in the absence of the characteristic fingerprint pattern. Over time, the fingerprint pattern returned, more quickly when the concentration of the PSLG-coated particles was low. At low particle concentration the particles were "guided" by the PSLG liquid crystal to organize into patterns similar to that of the re-formed bulk chiral nematic phase. When their concentration increased, the well-dispersed PSLG-coated particles seemed to map onto the distortions in the bulk host's local director field. The particles located near the glass vial-ChLC interfaces were stacked lengthwise into architectures with apparent two-dimensional hexagonal symmetry. The size of these "crystalline" structures increased with particle concentration. They displayed remarkable stability toward an external magnetic field; hydrophobic interactions between the PSLG polymers in the shell and those in the bulk LC matrix may be responsible. The results show that bio-inspired LCs can assemble suitable colloidal particles into soft crystalline structures.


Assuntos
Cristais Líquidos , Peptídeos/química , Polímeros , Dióxido de Silício , Campos Magnéticos
10.
Langmuir ; 32(22): 5542-51, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27164189

RESUMO

Hydrophobins are amphiphilic proteins produced by fungi. Cerato-ulmin (CU) is a hydrophobin that has been associated with Dutch elm disease. Like other hydrophobins, CU stabilizes air bubbles and oil droplets through the formation of a persistent protein film at the interface. The behavior of hydrophobins at surfaces has raised interest in their potential applications, including use in surface coatings, food foams, and emulsions and as dispersants. The practical use of hydrophobins requires an improved understanding of the interfacial behavior of these proteins, alone and in the presence of added surfactants. In this study, the adsorption behavior of CU at air/water interfaces is characterized by measuring the surface tension and interfacial rheology as a function of adsorption time. CU is found to adsorb irreversibly at air/water interfaces. The magnitude of the dilatational modulus increases with adsorption time and surface pressure until CU eventually forms a rigid film. The persistence of this film is tested through the sequential addition of strong surfactant sodium dodecyl sulfate (SDS) to the bulk liquid adjacent to the interface. SDS is found to coadsorb to interfaces precoated with a CU film. At high concentrations, the addition of SDS significantly decreases the dilatational modulus, indicating disruption and displacement of CU by SDS. Sequential adsorption results in mixed layers with properties not observed in interfaces generated from complexes formed in the bulk. These results lend insight to the complex interfacial interactions between hydrophobins and surfactants.

11.
J Fluoresc ; 26(2): 609-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26745991

RESUMO

A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.

12.
J Proteome Res ; 14(10): 4282-95, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26327436

RESUMO

The identification and sequencing of novel cationic antimicrobial peptides (CAMPs) have proven challenging due to the limitations associated with traditional proteomics methods and difficulties sequencing peptides present in complex biomolecular mixtures. We present here a process for large-scale identification and de novo-assisted sequencing of newly discovered CAMPs using microparticle capture followed by tandem mass spectrometry equipped with electron-transfer dissociation (ETD). This process was initially evaluated and verified using known CAMPs with varying physicochemical properties. The effective parameters were then applied in the analysis of a complex mixture of peptides harvested from American alligator plasma using custom-made (Bioprospector) functionalized hydrogel particles. Here, we report the successful sequencing process for CAMPs that has led to the identification of 340 unique peptides and the discovery of five novel CAMPs from American alligator plasma.


Assuntos
Jacarés e Crocodilos/sangue , Peptídeos Catiônicos Antimicrobianos/sangue , Proteínas Sanguíneas/isolamento & purificação , Descoberta de Drogas , Elétrons , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Proteínas Sanguíneas/química , Proteínas Sanguíneas/farmacologia , Cromatografia Líquida , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hidrogéis , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Dados de Sequência Molecular , Tamanho da Partícula , Proteômica/instrumentação , Proteômica/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Análise de Sequência de Proteína/métodos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
13.
Anticancer Drugs ; 26(2): 167-79, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25243454

RESUMO

Paclitaxel (PTX) is one of the most potent intravenous chemotherapeutic agents to date, yet an oral formulation has been problematic because of its low solubility and permeability. Using the recently discovered solubilizing properties of rubusoside (RUB), we investigated the unique PTX-RUB formulation. PTX was solubilized by RUB in water to levels of 1.6-6.3 mg/ml at 10-40% weight/volume. These nanomicellar PTX-RUB complexes were dried to a powder, which was subsequently reconstituted in physiologic solutions. After 2.5 h, 85-99% of PTX-RUB remained soluble in gastric fluid, whereas 79-96% remained soluble in intestinal fluid. The solubilization of PTX was mechanized by the formation of water-soluble spherical nanomicelles between PTX and RUB, with an average diameter of 6.6 nm. Compared with Taxol, PTX-RUB nanoparticles were nearly four times more permeable in Caco-2 cell monocultures. In a side-by-side comparison with dimethyl sulfoxide-solubilized PTX, PTX-RUB maintained the same level of cytotoxicity against three human cancer cell lines with IC50 values ranging from 4 to 20 nmol/l. In addition, tubule formation and migration of human umbilical vein endothelial cells were inhibited at levels as low as 5 nmol/l. These chemical and biological properties demonstrated by the PTX-RUB nanoparticles may improve oral bioavailability and enable further pharmacokinetic, toxicologic, and efficacy investigations.


Assuntos
Diterpenos do Tipo Caurano/química , Glucosídeos/química , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Células CACO-2/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Diterpenos do Tipo Caurano/administração & dosagem , Portadores de Fármacos/química , Estabilidade de Medicamentos , Glucosídeos/administração & dosagem , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Nanopartículas/administração & dosagem , Paclitaxel/farmacologia , Tamanho da Partícula , Permeabilidade , Solubilidade
14.
Biomacromolecules ; 16(9): 3062-72, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26270020

RESUMO

Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.


Assuntos
Materiais Biomiméticos/química , Óxidos N-Cíclicos/química , Morfolinas/química , Nylons/química
15.
Langmuir ; 30(12): 3373-80, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24635125

RESUMO

Poly(tetrafluoroethylene) (PTFE) latex particles have been analyzed and sorted according to size using asymmetric flow field flow fractionation (AF4) coupled with multiple-angle light scattering (MALS). Characterization of fractions by regular and depolarized dynamic light scattering confirmed that smaller particles elute prior to larger ones, as expected for field flow fractionation. The measured radii of the optically and geometrically anisotropic particles are consistent with those determined from transmission electron microscopy (TEM). A certain amount of heterogeneity remains in the fractions, but their uniformity for use as diffusion probes is improved. Full characterization of PTFE colloids will require a difficult assessment of the distribution, even within fractions, of the optical anisotropy. A general method to obtain number versus size distributions is presented. This approach is valid even when an online concentration detector is not available or ineffective. The procedure is adaptable to particles of almost any regular shape.

16.
ACS Omega ; 9(2): 2629-2638, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250429

RESUMO

Supramolecular Cu(II) complexes were prepared from two trifunctional ß-diketone ligands. The ligands (CH3Si(phacH)3 and CH3Si(phprH)3, represented by LH3) contain three aryl-ß-diketone moieties joined by an organosilicon group. The complexes have the empirical formula Cu3L2, as expected for combinations of Cu2+ and L3-. Several metal-organic polyhedra (MOPs) [Cu3L2]n are possible (n = 1-10); a dodecahedron (Cu30L20; n = 10; estimated diameter of ca. 5 nm) should be the most stable because its internal bond angles would come closest to ideal values. Atomic force microscopy (AFM), performed on samples deposited from solution onto mica substrates, revealed a distribution of sample heights in the 0.5-3.0 nm range. The most commonly observed heights were 0.5-1.5 nm, corresponding to the smallest possible molecules (Cu3L2, i.e., n = 1). Some molecular cubes (Cu12L8; ca. 2.5 nm) or larger molecules or aggregates may be present as well. Equilibrium analytical ultracentrifugation (AUC) was also used to probe the compounds. A previously reported reference compound, the molecular square Cu4(m-pbhx)4 (M = 2241 g mol-1), behaved well in AUC experiments in four nonpolar organic solvents. AUC data for the new tris(ß-diketonate) MOPs [Cu3L2]n in toluene and fluorobenzene did not agree well with the theoretical results for a single solute. The data were fit well by a two-solute model, but these results were not consistent in the two solvents used, and some run-to-run variability was noted even in the same solvent. Also, the calculated molecular weights differed significantly from those expected for [Cu3L2]n ([Cu3(CH3Si(phac)3)2]n, multiples of 1322 g mol-1; or [Cu3(CH3Si(phpr)3)2]n, multiples of 1490 g mol-1).

17.
J Proteome Res ; 11(4): 2127-39, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22256890

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and multiple reaction monitoring mass spectrometry (MRM-MS) proteomics analyses were performed on eccrine sweat of healthy controls, and the results were compared with those from individuals diagnosed with schizophrenia (SZ). This is the first large scale study of the sweat proteome. First, we performed LC-MS/MS on pooled SZ samples and pooled control samples for global proteomics analysis. Results revealed a high abundance of diverse proteins and peptides in eccrine sweat. Most of the proteins identified from sweat samples were found to be different than the most abundant proteins from serum, which indicates that eccrine sweat is not simply a plasma transudate and may thereby be a source of unique disease-associated biomolecules. A second independent set of patient and control sweat samples were analyzed by LC-MS/MS and spectral counting to determine qualitative protein differential abundances between the control and disease groups. Differential abundances of selected proteins, initially determined by spectral counting, were verified by MRM-MS analyses. Seventeen proteins showed a differential abundance of approximately 2-fold or greater between the SZ pooled sample and the control pooled sample. This study demonstrates the utility of LC-MS/MS and MRM-MS as a viable strategy for the discovery and verification of potential sweat protein disease biomarkers.


Assuntos
Glândulas Écrinas/metabolismo , Proteômica/métodos , Esquizofrenia/metabolismo , Suor/química , Adolescente , Adulto , Sequência de Aminoácidos , Biomarcadores/análise , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteoma/análise , Espectrometria de Massas em Tandem/métodos
18.
Langmuir ; 28(13): 5562-9, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22428537

RESUMO

Amine-functionalized colloidal silica finds use in a variety of applications and fundamental investigations. To explore convenient methods of synthesis and characterization of research-grade materials in relatively large quantities, nearly monodisperse colloidal silica particles were prepared by base-catalyzed hydrolysis of reagent-grade tetraethyl orthosilicate (TEOS) without the traditional time- and energy-consuming distillation step. Radius was varied reliably from 30 to 125 nm by changing the water/TEOS ratio. Asymmetric flow field flow fractionation (AF4) methods with online light scattering detection proved effective in assessing the uniformity of the various preparations. Even highly uniform commercial standards were resolved by AF4. The surface of the colloidal silica was decorated with amino groups using (3-aminopropyl) trimethoxysilane and spacer methyl groups from methyl-trimethoxysilane. The surface density of amino groups was quantified spectrophotometrically after reaction with ninhydrin; the nature of this analysis avoids interference from sample turbidity. As an alternative to the ninhydrin test, an empirical relationship between surface density of amino groups and zeta potential at low pH was found. The size of the colloidal silica was predictably decreased by etching with HF; this method will be effective for some preparations, despite a modest reduction in size uniformity.

19.
Biomacromolecules ; 13(1): 60-72, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-21995760

RESUMO

The aggregation of meso-tetra(4-sulfonatophenyl)porphyrin (H(2)TPPS(4-)) in phosphate solutions was investigated as a function of pH, concentration, time, ionic strength, and solution preparation (either from dilution of a freshly prepared 2 mM stock or by direct preparation of µM solution concentrations) using a combination of complementary analytical techniques. UV-vis and fluorescence spectroscopy indicated the formation of staggered, side-by-side (J-type) assemblies. Their size and self-associative behavior were determined using analytical ultracentrifugation and small-angle X-ray scattering. Our results indicate that in neutral and basic solutions of H(2)TPPS(4-), porphyrin dimers and trimers are formed at micromolar concentrations and in the absence of NaCl to screen any ionic interactions. At these low concentrations and pH 4, the protonated H(4)TPPS(2-) species self-assembles, leading to the formation of particularly stable aggregates bearing 25 ± 3 macrocycles. At higher concentrations, these structures further organize or reorganize into tubular, rod-like shapes of various lengths, which were imaged by cryogenic and freeze-fracture transmission electron microscopy. Micron-scale fibrillar aggregates were obtained even at micromolar concentrations at pH 4 when prepared from dilution of a 2 mM stock solution, upon addition of NaCl, or both.


Assuntos
Porfirinas/química , Cloreto de Sódio/química , Água/química , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão por Filtração de Energia , Estrutura Molecular , Espectrometria de Fluorescência
20.
J Phys Chem B ; 125(28): 7886-7899, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34236182

RESUMO

Classical molecular dynamics simulations using the Martini coarse-grained force field were performed to study oil nanodroplets surrounded by fungal hydrophobin (HP) proteins in seawater. The class I EAS and the class II HFBII HPs were studied along with two model oils, namely, benzene and n-decane. Both HPs exhibit free energy minima at the oil-seawater interface, which is deeper in benzene compared to the n-decane systems. Larger constraint forces are required to keep both HPs within the n-decane phase compared to inside benzene, with HFBII being more affine to benzene compared to EAS. Smaller surface tensions are observed at benzene-seawater interfaces coated with HPs compared to their n-decane counterparts. In the latter the surface tension remains unchanged upon increases in the concentration of HPs, whereas in benzene systems adding more HPs lead to decreases in surface tension. EAS has a larger tendency to cluster together in the interface compared to HFBII, with both HPs having larger coordination numbers when surrounding benzene droplets compared to when they are around n-decane nanoblobs. The HP-oil nanostructures in seawater examined have radii of gyration ranging between 2 and 12 nm, where the n-decane structures are larger and have more irregular shapes compared to the benzene systems. The n-decane molecules within the nanostructures form a compact spherical core, with the HPs partially covering its surface and clustering together, conferring irregular shapes to the nanostructures. The EAS with n-decane structures are larger and have more irregular shapes compared to their HFBII counterparts. In contrast, in the HP-benzene structures both HPs tend to penetrate the oil part of the droplet. The HFBII-benzene structures having the larger oil/HP ratios examined tend to be more compact and spherical compared to their EAS counterparts; however, some of the HFBII-benzene systems that have smaller oil/HP ratios have a more elongated structure compared to their EAS counterparts. This simulation study provides insights into HP-oil nanostructures that are smaller than the oil droplets and gas bubbles recently studied in experiments and, thus, might be challenging to examine with experimental techniques.


Assuntos
Proteínas Fúngicas , Nanoestruturas , Óleos , Água do Mar , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA