Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34183413

RESUMO

Our understanding of metabolic interactions between small symbiotic animals and bacteria or parasitic eukaryotes that reside within their bodies is extremely limited. This gap in knowledge originates from a methodological challenge, namely to connect histological changes in host tissues induced by beneficial and parasitic (micro)organisms to the underlying metabolites. We addressed this challenge and developed chemo-histo-tomography (CHEMHIST), a culture-independent approach to connect anatomic structure and metabolic function in millimeter-sized symbiotic animals. CHEMHIST combines chemical imaging of metabolites based on mass spectrometry imaging (MSI) and microanatomy-based micro-computed X-ray tomography (micro-CT) on the same animal. Both high-resolution MSI and micro-CT allowed us to correlate the distribution of metabolites to the same animal's three-dimensional (3D) histology down to submicrometer resolutions. Our protocol is compatible with tissue-specific DNA sequencing and fluorescence in situ hybridization for the taxonomic identification and localization of the associated micro(organisms). Building CHEMHIST upon in situ imaging, we sampled an earthworm from its natural habitat and created an interactive 3D model of its physical and chemical interactions with bacteria and parasitic nematodes in its tissues. Combining MSI and micro-CT, we present a methodological groundwork for connecting metabolic and anatomic phenotypes of small symbiotic animals that often represent keystone species for ecosystem functioning.


Assuntos
Técnicas Histológicas , Oligoquetos/fisiologia , Simbiose/fisiologia , Microtomografia por Raio-X , Animais , Bactérias/citologia , Interações Hospedeiro-Parasita , Imageamento Tridimensional , Espectrometria de Massas , Oligoquetos/citologia
2.
J Anat ; 242(5): 872-890, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36695312

RESUMO

In this study, we apply a two-step (untreated and soft tissue stained) diffusible iodine-based contrast-enhanced micro-computed tomography array to a wet-collection Lantern Shark specimen of Etmopterus lucifer. The focus of our scanning approach is the head anatomy. The unstained CT data allow the imaging of mineralized (skeletal) tissue, while results for soft tissue were achieved after staining for 120 h in a 1% ethanolic iodine solution. Three-dimensional visualization after the segmentation of hard as well as soft tissue reveals new details of tissue organization and allows us to draw conclusions on the significance of organs in their function. Outstanding are the ampullae of Lorenzini for electroreception, which appear as the dominant sense along with the olfactory system. Corresponding brain areas of these sensory organs are significantly enlarged as well and likely reflect adaptations to the lantern sharks' deep-sea habitat. While electroreception supports the capture of living prey, the enlarged olfactory system can guide the scavenging of these opportunistic feeders. Compared to other approaches based on the manual dissection of similar species, CT scanning is superior in some but not all aspects. For example, fenestrae of the cranial nerves within the chondrocranium cannot be identified reflecting the limitations of the method, however, CT scanning is less invasive, and the staining is mostly reversible and can be rinsed out.


Assuntos
Iodo , Tubarões , Animais , Microtomografia por Raio-X , Tubarões/anatomia & histologia , Crânio , Cabeça/diagnóstico por imagem
3.
Proc Biol Sci ; 288(1944): 20202939, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33529559

RESUMO

Primitive cnidarians are crucial for elucidating the early evolution of metazoan body plans and life histories in the late Neoproterozoic and Palaeozoic. The highest complexity of both evolutionary aspects within cnidarians is found in extant hydrozoans. Many colonial hydrozoans coated with chitinous exoskeletons have the potential to form fossils; however, only a few fossils possibly representing hydroids have been reported, which still require scrutiny. Here, we present an exceptionally well-preserved hydroid found in the Upper Cambrian Fengshan Formation in northern China. It was originally interpreted as a problematic graptolite with an uncertain systematic position. Based on three characteristic morphological traits shared with extant hydroids (with paired hydrothecae, regular hydrocaulus internodes and special intrathecal origin pattern of hydrocladium), we propose this fossil hydroid as a new genus, Palaeodiphasia gen. nov., affiliated with the advanced monophyletic hydrozoan clade Macrocolonia typically showing loss of the medusa stage. More Macrocolonia fossils reviewed here indicate that this life strategy of medusa loss has been achieved already as early as the Middle Devonian. The early stratigraphical appearance of such advanced hydroid contrasts with previous molecular hypotheses regarding the timing of medusozoan evolution, and may be indicative for understanding the Ediacaran cnidarian radiation.


Assuntos
Cnidários , Hidrozoários , Animais , Evolução Biológica , China , Fósseis , Hidrozoários/genética , Filogenia
4.
BMC Evol Biol ; 20(1): 65, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503417

RESUMO

BACKGROUND: The diversification process known as the Lake Tanganyika Radiation has given rise to the most speciose clade of African cichlids. Almost all cichlid species found in the lakes Tanganyika, Malawi and Victoria, comprising a total of 12-16 tribes, belong to this clade. Strikingly, all the species in the latter two lakes are members of the tribe Haplochromini, whose origin remains unclear. The 'out of Tanganyika' hypothesis argues that the Haplochromini emerged simultaneously with other cichlid tribes and lineages in Lake Tanganyika, presumably about 5-6 million years ago (MYA), and that their presence in the lakes Malawi and Victoria and elsewhere in Africa today is due to later migrations. In contrast, the 'melting pot Tanganyika hypothesis' postulates that Haplochromini emerged in Africa prior to the formation of Lake Tanganyika, and that their divergence could have begun about 17 MYA. Haplochromine fossils could potentially resolve this debate, but such fossils are extremely rare. RESULTS: Here we present a new fossil haplochromine from the upper Miocene site Waril (9-10 million years) in Central Kenya. Comparative morphology, supported by Micro-CT imaging, reveals that it bears a unique combination of characters relating to dentition, cranial bones, caudal skeleton and meristic traits. Its most prominent feature is the presence of exclusively unicuspid teeth, with canines in the outer tooth row. †Warilochromis unicuspidatus gen. et sp. nov. shares this combination of characters solely with members of the Haplochromini and its lacrimal morphology indicates a possible relation to the riverine genus Pseudocrenilabrus. Due to its fang-like dentition and non-fusiform body, †W. unicuspidatus gen. et sp. nov. might have employed either a sit-and-pursue or sit-and-wait hunting strategy, which has not been reported for any other fossil haplochromine cichlid. CONCLUSIONS: The age of the fossil (9-10 MYA) is incompatible with the 'out of Tanganyika' hypothesis, which postulates that the divergence of the Haplochromini began only 5-6 MYA. The presence of this fossil in an upper Miocene palaeolake in the Central Kenya Rift, as well as its predatory lifestyle, indicate that Haplochromini were already an important component of freshwater drainages in East Africa at that time.


Assuntos
Evolução Biológica , Ciclídeos , Animais , Ciclídeos/classificação , Fósseis , Quênia , Lagos , Filogenia , Tanzânia
5.
Front Zool ; 17: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021638

RESUMO

BACKGROUND: The astonishing variety of sounds that birds can produce has been the subject of many studies aiming to identify the underlying anatomical and physical mechanisms of sound production. An interesting feature of some bird vocalisations is the simultaneous production of two different frequencies. While most work has been focusing on songbirds, much less is known about dual-sound production in non-passerines, although their sound production organ, the syrinx, would technically allow many of them to produce "two voices". Here, we focus on the king penguin, a colonial seabird whose calls consist of two fundamental frequency bands and their respective harmonics. The calls are produced during courtship and for partner and offspring reunions and encode the birds' identity. We dissected, µCT-scanned and analysed the vocal tracts of six adult king penguins from Possession Island, Crozet Archipelago. RESULTS: King penguins possess a bronchial type syrinx that, similarly to the songbird's tracheobronchial syrinx, has two sets of vibratory tissues, and thus two separate sound sources. Left and right medial labium differ consistently in diameter between 0.5 and 3.2%, with no laterality between left and right side. The trachea has a conical shape, increasing in diameter from caudal to cranial by 16%. About 80% of the king penguins' trachea is medially divided by a septum consisting of soft elastic tissue (septum trachealis medialis). CONCLUSIONS: The king penguins' vocal tract appears to be mainly adapted to the life in a noisy colony of a species that relies on individual vocal recognition. The extent between the two voices encoding for individuality seems morphologically dictated by the length difference between left and right medial labium. The septum trachealis medialis might support this extent and could therefore be an important anatomical feature that aids in the individual recognition process.

6.
Genome ; 62(1): 1-10, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30557098

RESUMO

African sponges, particularly freshwater sponges, are understudied relative to demosponges in most other geographical regions. Freshwater sponges (Spongillida) likely share a common ancestor; however, their evolutionary history, particularly during their radiation into endemic and allegedly cosmopolitan groups, is unclear. Freshwater sponges of at least 58 species of 17 genera and four families are described from Central and Eastern Africa, but the diversity is underestimated due to limited distinguishable morphological features. The discovery of additional cryptic species is very likely with the use of molecular techniques such as DNA barcoding. The Royal Museum of Central Africa (MRAC, Tervuren, Belgium) hosts one of the largest collections of (Central) African freshwater sponge type material. Type specimens in theory constitute ideal targets for molecular taxonomy; however, the success is frequently hampered by DNA degradation and deamination, which are a consequence of suboptimal preservation techniques. Therefore, we genotyped African demosponge holotype material of the MRAC with specific short primers suitable for degenerated tissue and compare the results with the current, morphology-based classification. Our results demonstrate the utility of minimalistic barcodes for identification of sponges, potentially enabling efficient identification of individuals in taxonomic or metabarcoding studies, and highlight inconsistencies in the current freshwater sponge classification.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Filogenia , Poríferos/genética , Animais , Código de Barras de DNA Taxonômico/normas , Poríferos/classificação
7.
J Cell Sci ; 129(2): 444-56, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26659665

RESUMO

Intravital microscopy provides dynamic understanding of multiple cell biological processes, but its limited resolution has so far precluded structural analysis. Because it is difficult to capture rare and transient events, only a few attempts have been made to observe specific developmental and pathological processes in animal models using electron microscopy. The multimodal correlative approach that we propose here combines intravital microscopy, microscopic X-ray computed tomography and three-dimensional electron microscopy. It enables a rapid (c.a. 2 weeks) and accurate (<5 µm) correlation of functional imaging to ultrastructural analysis of single cells in a relevant context. We demonstrate the power of our approach by capturing single tumor cells in the vasculature of the cerebral cortex and in subcutaneous tumors, providing unique insights into metastatic events. Providing a significantly improved throughput, our workflow enables multiple sampling, a prerequisite for making correlative imaging a relevant tool to study cell biology in vivo. Owing to the versatility of this workflow, we envision broad applications in various fields of biological research, such as cancer or developmental biology.


Assuntos
Rastreamento de Células/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Feminino , Microscopia Intravital , Camundongos Nus , Microscopia Eletrônica de Varredura , Transplante de Neoplasias , Microambiente Tumoral , Microtomografia por Raio-X
8.
Naturwissenschaften ; 105(7-8): 49, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030631

RESUMO

Cryptic species have been detected in many groups of organisms and must be assumed to make up a significant portion of global biodiversity. We study geckos of the Ebenavia inunguis complex from Madagascar and surrounding islands and use species delimitation algorithms (GMYC, BOLD, BPP), COI barcode divergence, diagnostic codon indels in the nuclear marker PRLR, diagnostic categorical morphological characters, and significant differences in continuous morphological characters for its taxonomic revision. BPP yielded ≥ 10 operational taxonomic units, whereas GMYC (≥ 27) and BOLD (26) suggested substantial oversplitting. In consequnce, we resurrect Ebenavia boettgeri Boulenger 1885 and describe Ebenavia tuelinae sp. nov., Ebenavia safari sp. nov., and Ebenavia robusta sp. nov., increasing the number of recognised species in Ebenavia from two to six. Further lineages of Ebenavia retrieved by BPP may warrant species or subspecies status, but further taxonomic conclusions are postponed until more data become available. Finally, we present an identification key to the genus Ebenavia, provide an updated distribution map, and discuss the diagnostic values of computational species delimitation as well as morphological and molecular diagnostic characters.


Assuntos
Biologia Computacional , Lagartos/classificação , Lagartos/genética , Algoritmos , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , Madagáscar , Filogenia , Especificidade da Espécie
9.
Parasitology ; 144(11): 1441-1448, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28583219

RESUMO

Amblyomma birmitum sp. nov. is formally described as a new record from 99 Ma old Burmese amber from Myanmar. This confirms the presence of the extant hard tick genus Amblyomma C.L. Koch, 1844 (Ixodida: Ixodidae) in the Late Cretaceous. This discovery is placed in its wider context and some reports of fossil hard ticks, such as a Hyalomma C.L. Koch, 1844 in Eocene Baltic amber, are misidentifications. The genus Amblyomma belongs to the clade Metastriata, a group which probably also accommodates two extinct genera, Cornupalpatum Poinar and Brown, 2003 and Compluriscutata Poinar and Buckley, 2008, also found in Burmese amber. All three fossils are thus only a little younger than published molecular divergence time estimates (ca. 124 ± 17 Ma) for the Metastriata lineage. Amblyomma has a largely Gondwanan distribution today. However, in some biogeographical scenarios, e.g. the Samafrica model, its predicted radiation time postdates the dissolution of the original Gondwana supercontinent raising questions about how its current distribution pattern was achieved.


Assuntos
Âmbar , Fósseis/parasitologia , Ixodidae/genética , Animais , Ixodidae/classificação , Mianmar , Filogeografia , Especificidade da Espécie , Manejo de Espécimes
10.
Front Zool ; 10(1): 44, 2013 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23915384

RESUMO

BACKGROUND: In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. RESULTS: We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. CONCLUSIONS: The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations.

11.
Front Zool ; 9(1): 23, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22973977

RESUMO

BACKGROUND: Two types of excretory systems, protonephridia and metanephridial systems are common among bilaterians. The homology of protonephridia of lophotrochozoan taxa has been widely accepted. In contrast, the homology of metanephridial systems - including coelomic cavities as functional units - among taxa as well as the homology between the two excretory systems is a matter of ongoing discussion. This particularly concerns the molluscan kidneys, which are mostly regarded as being derived convergently to the metanephridia of e.g. annelids because of different ontogenetic origin. A reinvestigation of nephrogenesis in polyplacophorans, which carry many primitive traits within molluscs, could shed light on these questions. RESULTS: The metanephridial system of Lepidochitona corrugata develops rapidly in the early juvenile phase. It is formed from a coelomic anlage that soon achieves endothelial organization. The pericardium and heart are formed from the central portion of the anlage. The nephridial components are formed by outgrowth from lateral differentiations of the anlage. Simultaneously with formation of the heart, podocytes appear in the atrial wall of the pericardium. In addition, renopericardial ducts, kidneys and efferent nephroducts, all showing downstream ciliation towards the internal lumen, become differentiated (specimen length: 0.62 mm). Further development consists of elongation of the kidney and reinforcement of filtration and reabsorptive structures. CONCLUSIONS: During development and in fully formed condition the metanephridial system of Lepidochitona corrugata shares many detailed traits (cellular and overall organization) with the protonephridia of the same species. Accordingly, we suggest a serial homology of various cell types and between the two excretory systems and the organs as a whole. The formation of the metanephridial system varies significantly within Mollusca, thus the mode of formation cannot be used as a homology criterion. Because of similarities in overall organization, we conclude that the molluscan metanephridial system is homologous with that of the annelids not only at the cellular but also at the organ level.

12.
Arthropod Struct Dev ; 60: 101004, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227643

RESUMO

Lonchoptera lutea males produce giant spermatozoa that are more than 2000 µm long and 1.4 µm wide. Unlike the typical brachyceran spermatozoon, they have a highly asymmetrical cross-section with only a single, albeit very large, mitochondrial derivative and a pair of massive accessory bodies, one of which extends throughout the entire length of the sperm tail. The accessory bodies consist of an electron-dense matrix in which numerous peculiar electron-lucid substructures are embedded. In the mated female, the giant spermatozoa are found inside two tubular spermathecae which are also extremely long, measuring 4000 µm or more.


Assuntos
Dípteros/citologia , Espermatozoides/citologia , Animais , Dípteros/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Espermatozoides/ultraestrutura , Microtomografia por Raio-X
13.
Sci Rep ; 10(1): 3960, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127610

RESUMO

In the field of correlative microscopy, light and electron microscopy form a powerful combination for morphological analyses in zoology. Due to sample thickness limitations, these imaging techniques often require sectioning to investigate small animals and thereby suffer from various artefacts. A recently introduced nanoscopic X-ray computed tomography (NanoCT) setup has been used to image several biological objects, none that were, however, embedded into resin, which is prerequisite for a multitude of correlative applications. In this study, we assess the value of this NanoCT for correlative microscopy. For this purpose, we imaged a resin-embedded, meiofaunal sea cucumber with an approximate length of 1 mm, where microCT would yield only little information about the internal anatomy. The resulting NanoCT data exhibits isotropic 3D resolution, offers deeper insights into the 3D microstructure, and thereby allows for a complete morphological characterization. For comparative purposes, the specimen was sectioned subsequently to evaluate the NanoCT data versus serial sectioning light microscopy (ss-LM). To correct for mechanical instabilities and drift artefacts, we applied an alternative alignment procedure for CT reconstruction. We thereby achieve a level of detail on the subcellular scale comparable to ss-LM images in the sectioning plane.


Assuntos
Pepinos-do-Mar/ultraestrutura , Microtomografia por Raio-X/métodos , Animais , Imageamento Tridimensional , Microscopia , Microscopia Eletrônica
15.
Zookeys ; 835: 65-86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31065223

RESUMO

The present study aims to clarify the confused taxonomy of Z.schaufussi von Frauenfeld, 1862 and Zospeumsuarezi Gittenberger, 1980. Revision of Iberian Zospeum micro snails is severely hindered by uncertainties regarding the identity of the oldest Iberian Zospeum species, Z.schaufussi von Frauenfeld, 1862. In this paper, we clarify its taxonomic status by designating a lectotype from the original syntype series and by describing its internal and external shell morphology. Using SEM-EDX, we attempt to identify the area of the type locality cave more precisely than "a cave in Spain". The shell described and illustrated by Gittenberger (1980) as Z.schaufussi appears not to be conspecific with the lectotype shell, and is considered a separate species, Z.gittenbergeri Jochum, Prieto & De Winter, sp. n. Zospeumsuarezi was described from various caves in NW Spain. Study of the type material reveals that these shells are not homogenous in shell morphology. The holotype shell of Z.suarezi is imaged here for the first time. The paratype shell, illustrated by Gittenberger (1980) from a distant, second cave, is described as Zospeumpraetermissum Jochum, Prieto & De Winter, sp. n. The shell selected here as lectotype of Z.schaufussi, was also considered a paratype of Z.suarezi by Gittenberger (1980). Since this specimen is morphologically very similar to topotypic shells of Z.suarezi, the latter species is considered a junior synonym of Z.schaufussi (syn. n.). The internal shell morphology of all these taxa is described and illustrated using X-ray Micro Computer Tomography (Micro-CT).

16.
Zookeys ; (795): 1-12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429653

RESUMO

Five years ago, the Panamanian evolutionary lineage (EL) C12 was uncovered along with four other ELs in an integrative phylogenetic investigation of worldwide Carychiidae. Since EL C12 lacked shell material post-molecular analysis to serve as a museum voucher, it remained undescribed. Now, after recent collection efforts of C12 and the congener, Carychiumzarzaae Jochum & Weigand, 2017 at their original Panamanian sites, C12 is morphologically described and formally assigned the name, Carychiumpanamaense Jochum, sp. n. In sync with recent taxonomic treatment of the genus, computed tomography (CT) is used in this work to differentiate shells of C.panamaense sp. n. from geographically-proximal, Caribbean, North and Central American congeners. Recent material of topotypic Carychiumjardineanum (Chitty, 1853) and undamaged C.zarzaae were additionally CT-scanned and assessed in the comparative analyses.


Resumen Hace cinco años, el linaje evolutivo (LE) panameño C12 fue descubierto junto con otros cuatro LEs en un estudio filogenético integrativo mundial de Carychiidae. El LE C12 permaneció sin ser descrito dado que, después de los análisis moleculares, no había conchas disponibles que sirvieran como material de referencia en museos.Ahora, después de esfuerzos recientes para colectar C12 y el congénere, Carychiumzarzaae Jochum & Weigand, 2017 en los sitios panameños originales, C12 es descrito morfológicamente y se le asigna formalmente un nombre, Carychiumpanamaense Jochum, sp. n. De acuerdo con el tratamiento taxonómico reciente del género, en este trabajo se emplea tomografía computarizada (TC) para diferenciar conchas de C.panamaense sp. n. de congéneres geográficamente cercanos del Caribe, Norte y Centro América. Además, en el análisis comparativo se escaneó con TC y se examinó material reciente del topotípico Carychiumjardineanum (Chitty, 1853) y C.zarzaae en buen estado.

17.
Zootaxa ; 4382(1): 147-158, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29689941

RESUMO

The diversity and phylogenetic relationships of calcareous sponges are still not completely understood. Recent integrative approaches combined analyses of DNA and morphological observations. Such studies resulted in severe taxonomic revisions within the subclass Calcinea and provided the foundation for a phylogenetically meaningful classification. However, several genera are missing from DNA phylogenies and their relationship to other Calcinea remain uncertain. One of these genera is Leuclathrina (family Leucaltidae). We here describe a new species from the Maldives, Leuclathrina translucida sp. nov., which is only the second species of the genus. Like the type species Leuclathrina asconoides, the new species has a leuconoid aquiferous system and lacks a specialized choanoskeleton. Phylogenetic analyses of the partial 28S ribosomal RNA gene revealed that L. translucida sp. nov. is most closely related to a clade containing the exclusively asconoid genera Ascandra, Levinella and Soleneiscus, and to a clade of the likewise asconoid genus Ernstia. No close relationship exists to other members of the polyphyletic family Leucaltidae, or to any other leuconoid Calcinea. Our results suggest that the leuconoid aquiferous system of Leuclathrina evolved independently from that of other calcineans and that the family assignment of the genus has to be reconsidered. Because the latter requires a more comprehensive family level revision among many genera of Calcinea, we propose to formally retain the genus in Leucaltidae for the time being.


Assuntos
Poríferos/genética , Animais , Ilhas do Oceano Índico , Filogenia , RNA Ribossômico 28S , Análise de Sequência de DNA
18.
Bull Volcanol ; 80(4): 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527084

RESUMO

Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 µm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

19.
Methods Cell Biol ; 145: 293-313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29957211

RESUMO

The rapid and synchronous divisions of large and transparent oocytes, eggs, and embryos of marine species are exceptionally well suited for microscopic observation. Consequently, these cells have been models for cell division research since its beginnings and contributed some of its first and most fundamental discoveries. While large size and rapid transitions render these cells ideal specimens for light microscopy, the same features constitute a challenge for electron microscopy. Here, we describe example protocols from our work on starfish oocyte meiosis, where we overcome these challenges by using live imaging of fluorescently labeled structures in combination with correlated electron microscopy. In this work, we demonstrate how: (i) to capture a rapid, transient event in time and (ii) to localize a small structure within the large oocyte. These techniques are applicable with minor modifications to oocytes and embryos of other species and, possibly, to other cell types.


Assuntos
Embrião não Mamífero/fisiologia , Meiose/fisiologia , Microscopia Eletrônica/métodos , Oócitos/fisiologia , Estrelas-do-Mar/fisiologia , Animais , Ovos , Feminino
20.
Dev Cell ; 45(1): 33-52.e12, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29634935

RESUMO

Metastatic seeding is driven by cell-intrinsic and environmental cues, yet the contribution of biomechanics is poorly known. We aim to elucidate the impact of blood flow on the arrest and the extravasation of circulating tumor cells (CTCs) in vivo. Using the zebrafish embryo, we show that arrest of CTCs occurs in vessels with favorable flow profiles where flow forces control the adhesion efficacy of CTCs to the endothelium. We biophysically identified the threshold values of flow and adhesion forces allowing successful arrest of CTCs. In addition, flow forces fine-tune tumor cell extravasation by impairing the remodeling properties of the endothelium. Importantly, we also observe endothelial remodeling at arrest sites of CTCs in mouse brain capillaries. Finally, we observed that human supratentorial brain metastases preferably develop in areas with low perfusion. These results demonstrate that hemodynamic profiles at metastatic sites regulate key steps of extravasation preceding metastatic outgrowth.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Adesão Celular , Hemodinâmica , Neoplasias Pulmonares/patologia , Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/metabolismo , Ciclo Celular , Circulação Cerebrovascular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Neoplásicas Circulantes/metabolismo , Estudos Retrospectivos , Células Tumorais Cultivadas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA