Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Mult Scler ; 29(2): 295-300, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35959722

RESUMO

OBJECTIVES: Investigating differential vulnerability of thalamic nuclei in multiple sclerosis (MS). METHODS: In a secondary analysis of prospectively collected datasets, we pooled 136 patients with MS or clinically isolated syndrome and 71 healthy controls all scanned with conventional 3D-T1 and white-matter-nulled magnetization-prepared rapid gradient echo (WMn-MPRAGE) and tested for cognitive performance. T1-based thalamic segmentation was compared with the reference WMn-MPRAGE method. Volumes of thalamic nuclei were compared according to clinical phenotypes and cognitive profile. RESULTS: T1- and WMn-MPRAGE provided comparable segmentations (0.84 ± 0.13 < volume-similarity-index < 0.95 ± 0.03). Medial and posterior thalamic groups were significantly more affected than anterior and lateral groups. Cognitive impairment related to volume loss of the anterior group. CONCLUSION: Thalamic nuclei closest to the third ventricle are more affected, with cognitive consequences.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem
2.
Neuroimage ; 262: 119584, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007822

RESUMO

The thalamus is a central integration structure in the brain, receiving and distributing information among the cerebral cortex, subcortical structures, and the peripheral nervous system. Prior studies clearly show that the thalamus atrophies in cognitively unimpaired aging. However, the thalamus is comprised of multiple nuclei involved in a wide range of functions, and the age-related atrophy of individual thalamic nuclei remains unknown. Using a recently developed automated method of identifying thalamic nuclei (3T or 7T MRI with white-matter-nulled MPRAGE contrast and THOMAS segmentation) and a cross-sectional design, we evaluated the age-related atrophy rate for 10 thalamic nuclei (AV, CM, VA, VLA, VLP, VPL, pulvinar, LGN, MGN, MD) and an epithalamic nucleus (habenula). We also used T1-weighted images with the FreeSurfer SAMSEG segmentation method to identify and measure age-related atrophy for 11 extra-thalamic structures (cerebral cortex, cerebral white matter, cerebellar cortex, cerebellar white matter, amygdala, hippocampus, caudate, putamen, nucleus accumbens, pallidum, and lateral ventricle). In 198 cognitively unimpaired participants with ages spanning 20-88 years, we found that the whole thalamus atrophied at a rate of 0.45% per year, and that thalamic nuclei had widely varying age-related atrophy rates, ranging from 0.06% to 1.18% per year. A functional grouping analysis revealed that the thalamic nuclei involved in cognitive (AV, MD; 0.53% atrophy per year), visual (LGN, pulvinar; 0.62% atrophy per year), and auditory/vestibular (MGN; 0.64% atrophy per year) functions atrophied at significantly higher rates than those involved in motor (VA, VLA, VLP, and CM; 0.37% atrophy per year) and somatosensory (VPL; 0.32% atrophy per year) functions. A proximity-to-CSF analysis showed that the group of thalamic nuclei situated immediately adjacent to CSF atrophied at a significantly greater atrophy rate (0.59% atrophy per year) than that of the group of nuclei located farther from CSF (0.36% atrophy per year), supporting a growing hypothesis that CSF-mediated factors contribute to neurodegeneration. We did not find any significant hemispheric differences in these rates of change for thalamic nuclei. Only the CM thalamic nucleus showed a sex-specific difference in atrophy rates, atrophying at a greater rate in male versus female participants. Roughly half of the thalamic nuclei showed greater atrophy than all extra-thalamic structures examined (0% to 0.54% per year). These results show the value of white-matter-nulled MPRAGE imaging and THOMAS segmentation for measuring distinct thalamic nuclei and for characterizing the high and heterogeneous atrophy rates of the thalamus and its nuclei across the adult lifespan. Collectively, these methods and results advance our understanding of the role of thalamic substructures in neurocognitive and disease-related changes that occur with aging.


Assuntos
Núcleos Talâmicos , Tálamo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Atrofia/patologia , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto Jovem
3.
Magn Reson Med ; 86(1): 569-580, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33565135

RESUMO

PURPOSE: To develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design while maintaining a desired imaging performance. METHODS: Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E-field. Gradient coils confined to various build envelopes were designed with minimum E-fields subject to standard magnetic field constraints. We examined the characteristics of E-field-constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions. RESULTS: For transverse gradients, symmetric solutions create high levels of E-fields in the shoulder region, while fully asymmetric solutions create high E-fields on the top of the head. Partially asymmetric solutions result in the lowest E-fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E-field for x-gradient and y-gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion. CONCLUSIONS: We introduce a generalized method for minimum E-field gradient design and define the theoretical limits of magnetic energy and peak E-field for gradient coils of arbitrary cylindrical geometry.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Eletricidade , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos
4.
Magn Reson Med ; 86(4): 2301-2315, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080744

RESUMO

PURPOSE: To demonstrate and validate electric field (E-field) calculation and peripheral nerve stimulation (PNS) prediction methods that are accurate, computationally efficient, and that could be used to inform regulatory standards. METHODS: We describe a simplified method for calculating the spatial distribution of induced E-field over the volume of a body model given a gradient coil vector potential field. The method is easily programmed without finite element or finite difference software, allowing for straightforward and computationally efficient E-field evaluation. Using these E-field calculations and a range of body models, population-weighted PNS thresholds are determined using established methods and compared against published experimental PNS data for two head gradient coils and one body gradient coil. RESULTS: A head-gradient-appropriate chronaxie value of 669 µs was determined by meta-analysis. Prediction errors between our calculated PNS parameters and the corresponding experimentally measured values were ~5% for the body gradient and ~20% for the symmetric head gradient. Our calculated PNS parameters matched experimental measurements to within experimental uncertainty for 73% of ∆Gmin estimates and 80% of SRmin estimates. Computation time is seconds for initial E-field maps and milliseconds for E-field updates for different gradient designs, allowing for highly efficient iterative optimization of gradient designs and enabling new dimensions in PNS-optimal gradient design. CONCLUSIONS: We have developed accurate and computationally efficient methods for prospectively determining PNS limits, with specific application to head gradient coils.


Assuntos
Imageamento por Ressonância Magnética , Nervos Periféricos , Estimulação Elétrica , Eletricidade , Campos Eletromagnéticos , Cabeça/diagnóstico por imagem , Nervos Periféricos/diagnóstico por imagem
5.
Magn Reson Med ; 85(6): 3522-3530, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33464649

RESUMO

PURPOSE: In this work, we investigated how the position of the radiofrequency (RF) shield can affect the signal-to-noise ratio (SNR) of a receive RF coil. Our aim was to obtain physical insight for the design of a 10.5T 32-channel head coil, subject to the constraints on the diameter of the RF shield imposed by the head gradient coil geometry. METHOD: We used full-wave numerical simulations to investigate how the SNR of an RF receive coil depends on the diameter of the RF shield at ultra-high magnetic field (UHF) strengths (≥7T). RESULTS: Our simulations showed that there is an SNR-optimal RF shield size at UHF strength, whereas at low field the SNR monotonically increases with the shield diameter. For a 32-channel head coil at 10.5T, an optimally sized RF shield could act as a cylindrical waveguide and increase the SNR in the brain by 27% compared to moving the shield as far as possible from the coil. Our results also showed that a separate transmit array between the RF shield and the receive array could considerably reduce SNR even if they are decoupled. CONCLUSION: At sufficiently high magnetic field strength, the design of local RF coils should be optimized together with the design of the RF shield to benefit from both near field and resonant modes.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Cabeça , Imagens de Fantasmas , Razão Sinal-Ruído
6.
Proc Natl Acad Sci U S A ; 115(1): 192-197, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255043

RESUMO

Reward hypersensitization is a common feature of neuropsychiatric disorders, manifesting as impulsivity for anticipated incentives. Temporally specific changes in activity within the nucleus accumbens (NAc), which occur during anticipatory periods preceding consummatory behavior, represent a critical opportunity for intervention. However, no available therapy is capable of automatically sensing and therapeutically responding to this vulnerable moment in time when anticipation-related neural signals may be present. To identify translatable biomarkers for an off-the-shelf responsive neurostimulation system, we record local field potentials from the NAc of mice and a human anticipating conventional rewards. We find increased power in 1- to 4-Hz oscillations predominate during reward anticipation, which can effectively trigger neurostimulation that reduces consummatory behavior in mice sensitized to highly palatable food. Similar oscillations are present in human NAc during reward anticipation, highlighting the translational potential of our findings in the development of a treatment for a major unmet need.


Assuntos
Comportamento Consumatório/fisiologia , Ritmo Delta/fisiologia , Núcleo Accumbens/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos
7.
Hum Brain Mapp ; 41(17): 4769-4788, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32762005

RESUMO

Magnetic resonance-guided focused ultrasound (MRgFUS) ablation of the ventral intermediate (Vim) thalamic nucleus is an incisionless treatment for essential tremor (ET). The standard initial targeting method uses an approximate, atlas-based stereotactic approach. We developed a new patient-specific targeting method to identify an individual's Vim and the optimal MRgFUS target region therein for suppression of tremor. In this retrospective study of 14 ET patients treated with MRgFUS, we investigated the ability of WMnMPRAGE, a highly sensitive and robust sequence for imaging gray matter-white matter contrast, to identify the Vim, FUS ablation, and a clinically efficacious region within the Vim in individual patients. We found that WMnMPRAGE can directly visualize the Vim in ET patients, segmenting this nucleus using manual or automated segmentation capabilities developed by our group. WMnMPRAGE also delineated the ablation's core and penumbra, and showed that all patients' ablation cores lay primarily within their Vim segmentations. We found no significant correlations between standard ablation features (e.g., ablation volume, Vim-ablation overlap) and 1-month post-treatment clinical outcome. We then defined a group-based probabilistic target, which was nonlinearly warped to individual brains; this target was located within the Vim for all patients. The overlaps between this target and patient ablation cores correlated significantly with 1-month clinical outcome (r = -.57, p = .03), in contrast to the standard target (r = -.23, p = .44). We conclude that WMnMPRAGE is a highly sensitive sequence for segmenting Vim and ablation boundaries in individual patients, allowing us to find a novel tremor-associated center within Vim and potentially improving MRgFUS treatment for ET.


Assuntos
Tremor Essencial/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/cirurgia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Avaliação de Resultados em Cuidados de Saúde , Cirurgia Assistida por Computador
8.
Magn Reson Med ; 83(1): 154-169, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31403223

RESUMO

PURPOSE: To introduce a novel reconstruction method for simultaneous multi-slice (SMS)-accelerated multi-shot diffusion weighted imaging (ms-DWI). METHODS: SMS acceleration using blipped-CAIPI schemes have been proposed to speed up the acquisition of ms-DWIs. The reconstruction of the data requires (a) phase compensation to combine data from different shots and (b) slice unfolding to separate the data of different slices. The traditional approaches first estimate the phase maps corresponding to each shot and slice which are then employed to iteratively recover the slice unfolded DWIs without phase artifacts. In contrast, the proposed reconstruction directly recovers the slice-unfolded k-space data of the multiple shots for each slice in a single-step recovery scheme. The proposed method is enabled by the low-rank property inherent in the k-space samples of ms-DW acquisition. This enabled to formulate a joint recovery scheme that simultaneously (a) unfolds the k-space data of each slice using a SENSE-based scheme and (b) recover the missing k-space samples in each slice of the multi-shot acquisition employing a structured low-rank matrix completion. Additional smoothness regularization is also utilized for higher acceleration factors. The proposed joint recovery is tested on simulated and in vivo data and compared to similar un-navigated methods. RESULTS: Our experiments show effective slice unfolding and successful recovery of DWIs with minimal phase artifacts using the proposed method. The performance is comparable to existing methods at low acceleration factors and better than existing methods for higher acceleration factors. CONCLUSIONS: For the slice accelerations considered in this study, the proposed method can successfully recover DWIs from SMS-accelerated ms-DWI acquisitions.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Artefatos , Simulação por Computador , Imagem Ecoplanar , Análise de Fourier , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Modelos Estatísticos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
9.
Magn Reson Med ; 84(3): 1661-1671, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32077521

RESUMO

PURPOSE: Motion artifact limits the clinical translation of high-field MR. We present an optical prospective motion correction system for 7 Tesla MRI using a custom-built, within-coil camera to track an optical marker mounted on a subject. METHODS: The camera was constructed to fit between the transmit-receive coils with direct line of sight to a forehead-mounted marker, improving upon prior mouthpiece work at 7 Tesla MRI. We validated the system by acquiring a 3D-IR-FSPGR on a phantom with deliberate motion applied. The same 3D-IR-FSPGR and a 2D gradient echo were then acquired on 7 volunteers, with/without deliberate motion and with/without motion correction. Three neuroradiologists blindly assessed image quality. In 1 subject, an ultrahigh-resolution 2D gradient echo with 4 averages was acquired with motion correction. Four single-average acquisitions were then acquired serially, with the subject allowed to move between acquisitions. A fifth single-average 2D gradient echo was acquired following subject removal and reentry. RESULTS: In both the phantom and human subjects, deliberate and involuntary motion were well corrected. Despite marked levels of motion, high-quality images were produced without spurious artifacts. The quantitative ratings confirmed significant improvements in image quality in the absence and presence of deliberate motion across both acquisitions (P < .001). The system enabled ultrahigh-resolution visualization of the hippocampus during a long scan and robust alignment of serially acquired scans with interspersed movement. CONCLUSION: We demonstrate the use of a within-coil camera to perform optical prospective motion correction and ultrahigh-resolution imaging at 7 Tesla MRI. The setup does not require a mouthpiece, which could improve accessibility of motion correction during 7 Tesla MRI exams.


Assuntos
Artefatos , Encéfalo , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Neuroimagem , Estudos Prospectivos
10.
Mult Scler ; 26(8): 987-992, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30730233

RESUMO

BACKGROUND: Investigating the degeneration of specific thalamic nuclei in multiple sclerosis (MS) remains challenging. METHODS: White-matter-nulled (WMn) MPRAGE, MP-FLAIR, and standard T1-weighted magnetic resonance imaging (MRI) were performed on MS patients (n = 15) and matched controls (n = 12). Thalamic lesions were counted in individual sequences and lesion contrast-to-noise ratio (CNR) was measured. Volumes of 12 thalamic nuclei were measured using an automatic segmentation pipeline specifically developed for WMn-MPRAGE. RESULTS: WMn-MPRAGE showed more thalamic MS lesions (n = 35 in 9 out of 15 patients) than MP-FLAIR (n = 25) and standard T1 (n = 23), which was associated with significant improvement of CNR (p < 0.0001). MS patients had whole thalamus atrophy (p = 0.003) with lower volumes found for the anteroventral (p < 0.001), the pulvinar (p < 0.0001), and the habenular (p = 0.004) nuclei. CONCLUSION: WMn-MPRAGE and automatic thalamic segmentation can highlight thalamic MS lesions and measure patterns of focal thalamic atrophy.


Assuntos
Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem/métodos , Núcleos Talâmicos/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Atlas como Assunto , Atrofia/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Núcleos Talâmicos/patologia , Substância Branca/patologia
11.
Proc Natl Acad Sci U S A ; 114(45): 12075-12080, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078387

RESUMO

Older adults experience impairments in episodic memory, ranging from mild to clinically significant. Given the critical role of the medial temporal lobe (MTL) in episodic memory, age-related changes in MTL structure and function may partially account for individual differences in memory. Using ultra-high-field 7T structural MRI and high-resolution 3T functional MRI (hr-fMRI), we evaluated MTL subfield thickness and function in older adults representing a spectrum of cognitive health. Participants performed an associative memory task during hr-fMRI in which they encoded and later retrieved face-name pairs. Motivated by prior research, we hypothesized that differences in performance would be explained by the following: (i) entorhinal cortex (ERC) and CA1 apical neuropil layer [CA1-stratum radiatum lacunosum moleculare (SRLM)] thickness, and (ii) activity in ERC and the dentate gyrus (DG)/CA3 region. Regression analyses revealed that this combination of factors significantly accounted for variability in memory performance. Among these metrics, CA1-SRLM thickness was positively associated with memory, whereas DG/CA3 retrieval activity was negatively associated with memory. Furthermore, including structural and functional metrics in the same model better accounted for performance than did single-modality models. These results advance the understanding of how independent but converging influences of both MTL subfield structure and function contribute to age-related memory impairment, complementing findings in the rodent and human postmortem literatures.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Giro Denteado/fisiopatologia , Memória/fisiologia , Idoso , Idoso de 80 Anos ou mais , Córtex Entorrinal/fisiopatologia , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos da Memória/fisiopatologia , Pessoa de Meia-Idade , Lobo Temporal
12.
Neuroimage ; 194: 272-282, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894331

RESUMO

The thalamus and its nuclei are largely indistinguishable on standard T1 or T2 weighted MRI. While diffusion tensor imaging based methods have been proposed to segment the thalamic nuclei based on the angular orientation of the principal diffusion tensor, these are based on echo planar imaging which is inherently limited in spatial resolution and suffers from distortion. We present a multi-atlas segmentation technique based on white-matter-nulled MP-RAGE imaging that segments the thalamus into 12 nuclei with computation times on the order of 10 min on a desktop PC; we call this method THOMAS (THalamus Optimized Multi Atlas Segmentation). THOMAS was rigorously evaluated on 7T MRI data acquired from healthy volunteers and patients with multiple sclerosis by comparing against manual segmentations delineated by a neuroradiologist, guided by the Morel atlas. Segmentation accuracy was very high, with uniformly high Dice indices: at least 0.85 for large nuclei like the pulvinar and mediodorsal nuclei and at least 0.7 even for small structures such as the habenular, centromedian, and lateral and medial geniculate nuclei. Volume similarity indices ranged from 0.82 for the smaller nuclei to 0.97 for the larger nuclei. Volumetry revealed that the volumes of the right anteroventral, right ventral posterior lateral, and both right and left pulvinar nuclei were significantly lower in MS patients compared to controls, after adjusting for age, sex and intracranial volume. Lastly, we evaluated the potential of this method for targeting the Vim nucleus for deep brain surgery and focused ultrasound thalamotomy by overlaying the Vim nucleus segmented from pre-operative data on post-operative data. The locations of the ablated region and active DBS contact corresponded well with the segmented Vim nucleus. Our fast, direct structural MRI based segmentation method opens the door for MRI guided intra-operative procedures like thalamotomy and asleep DBS electrode placement as well as for accurate quantification of thalamic nuclear volumes to follow progression of neurological disorders.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Núcleos Talâmicos/anatomia & histologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Magn Reson Med ; 81(4): 2808-2822, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30426583

RESUMO

PURPOSE: Managing local specific absorption rate (SAR) in parallel transmission requires ensuring that the peak SAR over a large number of voxels (> 105 ) is below the regulatory limit. The safety risk to the patient depends on cumulative (not instantaneous) SAR thus making a joint design of all RF pulses in a sequence desirable. We propose the Iterative Minimization Procedure with Uncompressed Local SAR Estimate (IMPULSE), an efficient optimization formulation and algorithm that can handle uncompressed SAR matrices and optimize pulses for all slices jointly within a practical time frame. THEORY AND METHODS: IMPULSE optimizes parallel transmit pulses for small-tip-angle slice selective excitation to minimize a single cost function incorporating multiple quantities (local SAR, global SAR, and per-channel power) averaged over the entire multislice scan subject to a strict constraint on excitation accuracy. Pulses for an 8-channel 7T head coil were designed with IMPULSE and compared with pulses designed using generic optimization algorithms and VOPs to assess the computation time and SAR performance benefits. RESULTS: IMPULSE achieves lower SAR and shorter computation time compared with a VOP approach. Compared with the generic sequential quadratic programming algorithm, computation time is reduced by a factor of 5-6 by using IMPULSE. Using as many as 6 million local SAR terms, up to 120 slices can be designed jointly with IMPULSE within 45 s. CONCLUSIONS: IMPULSE can handle significantly larger number of SAR matrices and slices than conventional optimization algorithms, enabling the use of uncompressed or partially compressed SAR matrices to design pulses for a multislice scan in a practical time frame.


Assuntos
Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Ondas de Rádio , Algoritmos , Simulação por Computador , Humanos , Modelos Teóricos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Risco , Sensibilidade e Especificidade , Software
14.
Neuroimage ; 168: 59-70, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27915120

RESUMO

Ultra High Field (UHF) MRI requires improved gradient and shim performance to fully realize the promised gains (SNR as well as spatial, spectral, diffusion resolution) that higher main magnetic fields offer. Both the more challenging UHF environment by itself, as well as the higher currents used in high performance coils, require a deeper understanding combined with sophisticated engineering modeling and construction, to optimize gradient and shim hardware for safe operation and for highest image quality. This review summarizes the basics of gradient and shim technologies, and outlines a number of UHF-related challenges and solutions. In particular, Lorentz forces, vibroacoustics, eddy currents, and peripheral nerve stimulation are discussed. Several promising UHF-relevant gradient concepts are described, including insertable gradient coils aimed at higher performance neuroimaging.


Assuntos
Encéfalo/diagnóstico por imagem , Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/normas , Humanos
15.
Muscle Nerve ; 57(3): 494-498, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29211916

RESUMO

INTRODUCTION: Evaluation of the nerve fascicular structure can be useful in diagnosing nerve damage, but it is a very challenging task with 3T MRI because of limited resolution. In this pilot study, we present the feasibility of high-resolution 7T MRI for examining the nerve fascicular structure. METHODS: A 3-dimensional (3D) gradient-spoiled sequence was used for imaging peripheral nerves in extremities. Images acquired with different in-plane resolutions (0.42 × 0.42 mm vs. 0.12 × 0.12 mm), and different main field strengths (7T vs. 3T) were compared. RESULTS: The individual nerve fascicles were identified at 0.12 × 0.12 mm resolution in both field strengths but not at 0.42 × 0.42 mm resolution. The fascicular structure was more sharply depicted in 7T images than in 3T images. DISCUSSION: High-resolution 3D imaging with 7T MRI demonstrated feasibility for imaging nerve fascicular structures. Muscle Nerve 57: 494-498, 2018.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nervos Periféricos/diagnóstico por imagem , Nervo Tibial/diagnóstico por imagem , Estudos de Viabilidade , Humanos , Imageamento Tridimensional , Projetos Piloto
16.
Brain ; 140(7): 1932-1946, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28549087

RESUMO

See Duering and Schmidt (doi:10.1093/awx135) for a scientific commentary on this article.Thalamic alterations have been observed in infarcts initially sparing the thalamus but interrupting thalamo-cortical or cortico-thalamic projections. We aimed at extending this knowledge by demonstrating with in vivo imaging sensitive to iron accumulation, one marker of neurodegeneration, that (i) secondary thalamic alterations are focally located in specific thalamic nuclei depending on the initial infarct location; and (ii) such secondary alterations can contribute independently to the long-term outcome. To tackle this issue, 172 patients with an infarct initially sparing the thalamus were prospectively evaluated clinically and with magnetic resonance imaging to quantify iron through R2* map at 24-72 h and at 1-year follow-up. An asymmetry index was used to compare R2* within the thalamus ipsilateral versus contralateral to infarct and we focused on the 95th percentile of R2* as a metric of high iron content. Spatial distribution within the thalamus was analysed on an average R2* map from the entire cohort. The asymmetry index of the 95th percentile within individual nuclei (medio-dorsal, pulvinar, lateral group) were compared according to the initial infarct location in simple and multiple regression analyses and using voxel-based lesion-symptom mapping. Associations between the asymmetry index of the 95th percentile and functional, cognitive and emotional outcome were calculated in multiple regression models. We showed that R2* was not modified at 24-72 h but showed heterogeneous increase at 1 year mainly within the medio-dorsal and pulvinar nuclei. The asymmetry index of the 95th percentile within the medio-dorsal nucleus was significantly associated with infarcts involving anterior areas (frontal P = 0.05, temporal P = 0.02, lenticular P = 0.01) while the asymmetry index of the 95th percentile within the pulvinar nucleus was significantly associated with infarcts involving posterior areas (parietal P = 0.046, temporal P < 0.001) independently of age, gender and infarct volume, which was confirmed by voxel-based lesion-symptom mapping. The asymmetry index of the 95th percentile within the entire thalamus at 1 year was independently associated with poor functional outcome (P = 0.04), poor cognitive outcome (P = 0.03), post-stroke anxiety (P = 0.04) and post-stroke depression (P = 0.02). We have therefore identified that iron accumulates within the thalamus ipsilateral to infarct after a delay with a focal distribution that is strongly linked to the initial infarct location (in relation with the pattern of connectivity between thalamic nuclei and cortical areas or deep nuclei), which independently contributes to functional, cognitive and emotional outcome.


Assuntos
Infarto Cerebral/patologia , Ferro/metabolismo , Núcleos Talâmicos/metabolismo , Núcleos Talâmicos/patologia , Adulto , Idoso de 80 Anos ou mais , Infarto Cerebral/complicações , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Fatores de Tempo
17.
Artigo em Inglês | MEDLINE | ID: mdl-30613196

RESUMO

PURPOSE: To identify novel concepts for RF-shim loop architectures suitable for 7T made of two concentric conducting loops fulfilling RF and DC functions, respectively, and to determine their relative SNR performance. The goal is to minimize interference between the two systems while making efficient use of the space closest to the body. THEORY: We show by means of theoretical derivation of the frequency spectrum that the proposed two-loop structure exhibits an anti-resonant null and a resonant peak in the frequency domain. METHODS: The proposed structure is comprised of two concentric wire loops either arranged as nested loops or in the form of a coaxial cable, in which the two conductors carry the RF and shim signals, respectively. We use theory, simulation, and phantom measurements to obtain frequency spectra and SNR maps for the proposed structures. RESULTS: Retained SNR is found to be 75% in the coaxial loop and ranges from 57% to 67% in three different coaxial configurations. We have found both implementations to be a viable concept for the use in RF-shim devices if remaining SNR limitations can be overcome. CONCLUSIONS: We have investigated two new design modalities in 7T RF-shim coil design that separate the RF and shim conductors such that the previously proposed toroidal chokes are eliminated - thereby removing undesired additional loss, bulk, and design complexity.

18.
Magn Reson Med ; 78(4): 1599-1606, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27779779

RESUMO

PURPOSE: To develop a new method capable of directly measuring specific absorption rate (SAR) deposited in tissue using the thermoacoustic signal induced by short radiofrequency (RF) pulse excitation. THEORY: A detailed model based on the thermoacoustic wave generation and propagation is presented. METHODS: We propose a new concept for direct measurement of SAR, to be used as a safety assessment/monitoring tool for MRI. The concept involves the use of short bursts of RF energy and the measurement of the resulting thermoacoustic excitation pattern by an array of ultrasound transducers, followed by image reconstruction to yield the 3D SAR distribution. We developed a simulation framework to model this thermoacoustic SAR mapping concept and verified the concept in vitro. RESULTS: Simulations show good agreement between reconstructed and original SAR distributions with an error of 4.2, 7.2, and 8.4% of the mean SAR values in axial, sagittal, and coronal planes and support the feasibility of direct experimental mapping of SAR distributions in vivo. The in vitro experiments show good agreement with theory (r2 = 0.52). CONCLUSIONS: A novel thermoacoustic method for in vivo mapping of local SAR patterns in MRI has been proposed and verified in simulation and in a phantom experiment. Magn Reson Med 78:1599-1606, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Acústica/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Absorção Fisico-Química , Simulação por Computador , Desenho de Equipamento , Estudos de Viabilidade , Cabeça/diagnóstico por imagem , Temperatura Alta , Humanos , Modelos Biológicos , Imagens de Fantasmas
19.
Magn Reson Med ; 78(4): 1635-1645, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27859549

RESUMO

PURPOSE: To accurately analyze vibroacoustics in MR head gradient coils. THEORY AND METHODS: A detailed theoretical model for gradient coil vibroacoustics, including the first description and modeling of Lorentz damping, is introduced and implemented in a multiphysics software package. Numerical finite-element method simulations were used to establish a highly accurate vibroacoustic model in head gradient coils in detail, including the newly introduced Lorentz damping effect. Vibroacoustic coupling was examined through an additional modal analysis. Thorough experimental studies were used to validate simulations. RESULTS: Average experimental sound pressure levels (SPLs) and accelerations over the 0-3000 Hz frequency range were 97.6 dB, 98.7 dB, and 95.4 dB, as well as 20.6 g, 8.7 g, and 15.6 g for the X-, Y-, and Z-gradients, respectively. A reasonable agreement between simulations and measurements was achieved. Vibroacoustic coupling showed a coupled resonance at 2300 Hz for the Z-gradient that is responsible for a sharp peak and the highest SPL value in the acoustic spectrum. CONCLUSION: We have developed and used more realistic multiphysics simulation methods to gain novel insights into the underlying concepts for vibroacoustics in head gradient coils, which will permit improved analyses of existing gradient coils and novel SPL reduction strategies for future gradient coil designs. Magn Reson Med 78:1635-1645, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Acústica/instrumentação , Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Modelos Teóricos , Simulação por Computador , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Vibração
20.
Magn Reson Med ; 75(6): 2265-77, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26190230

RESUMO

PURPOSE: Magnetization transfer in white matter (WM) causes biexponential relaxation, but most quantitative T1 measurements fit data assuming monoexponential relaxation. The resulting monoexponential T1 estimate varies based on scan parameters and represents a source of variation between studies, especially at high fields. In this study, we characterized WM T1 relaxation and performed simulations to determine how to minimize this deviation. METHODS: To characterize biexponential relaxation, four volunteers were scanned at 3T and 7T using inversion recovery fast spin echo (IR-FSE) with 13 inversion times (TIs). Three volunteers were scanned with IR-FSE using TIs chosen by simulations to reduce T1 deviation, and with MP2RAGE. RESULTS: At 3T, the biexponential relaxation has a short component of T1 = 48 ms (9%) and a long component of T1 = 939 ms. At 7T the short component is T1 = 57 ms (11%) and the long component is 1349 ms (89%). For IR-FSE, acquiring four TIs with a minimum of 150 ms (3T) or 200 ms (7T) yielded monoexponential T1 estimates that match the long component to within 10 ms. For MP2RAGE, significant differences (90 ms at 3T, 125 ms at 7T) remain at all parameter values. CONCLUSION: Many T1 mapping sequences yield robust estimates of the long T1 component with suitable choice of TIs, allowing reproducible, sequence-independent T1 values to be measured. However, this is not true of MP2RAGE in its current implementation. Magn Reson Med 75:2265-2277, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Adulto , Simulação por Computador , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA