Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Rev Neurosci ; 23(3): 173-186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027710

RESUMO

One leading hypothesis suggests that memories are stored in ensembles of neurons (or 'engram cells') and that successful recall involves reactivation of these ensembles. A logical extension of this idea is that forgetting occurs when engram cells cannot be reactivated. Forms of 'natural forgetting' vary considerably in terms of their underlying mechanisms, time course and reversibility. However, we suggest that all forms of forgetting involve circuit remodelling that switches engram cells from an accessible state (where they can be reactivated by natural recall cues) to an inaccessible state (where they cannot). In many cases, forgetting rates are modulated by environmental conditions and we therefore propose that forgetting is a form of neuroplasticity that alters engram cell accessibility in a manner that is sensitive to mismatches between expectations and the environment. Moreover, we hypothesize that disease states associated with forgetting may hijack natural forgetting mechanisms, resulting in reduced engram cell accessibility and memory loss.


Assuntos
Plasticidade Celular , Rememoração Mental , Adaptação Fisiológica , Humanos , Rememoração Mental/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
2.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38228367

RESUMO

Subconcussive head impacts are associated with the development of acute and chronic cognitive deficits. We recently reported that high-frequency head impact (HFHI) causes chronic cognitive deficits in mice through synaptic changes. To better understand the mechanisms underlying HFHI-induced memory decline, we used TRAP2/Ai32 transgenic mice to enable visualization and manipulation of memory engrams. We labeled the fear memory engram in male and female mice exposed to an aversive experience and subjected them to sham or HFHI. Upon subsequent exposure to natural memory recall cues, sham, but not HFHI, mice successfully retrieved fearful memories. In sham mice the hippocampal engram neurons exhibited synaptic plasticity, evident in amplified AMPA:NMDA ratio, enhanced AMPA-weighted tau, and increased dendritic spine volume compared with nonengram neurons. In contrast, although HFHI mice retained a comparable number of hippocampal engram neurons, these neurons did not undergo synaptic plasticity. This lack of plasticity coincided with impaired activation of the engram network, leading to retrograde amnesia in HFHI mice. We validated that the memory deficits induced by HFHI stem from synaptic plasticity impairments by artificially activating the engram using optogenetics and found that stimulated memory recall was identical in both sham and HFHI mice. Our work shows that chronic cognitive impairment after HFHI is a result of deficiencies in synaptic plasticity instead of a loss in neuronal infrastructure, and we can reinstate a forgotten memory in the amnestic brain by stimulating the memory engram. Targeting synaptic plasticity may have therapeutic potential for treating memory impairments caused by repeated head impacts.


Assuntos
Amnésia , Memória , Masculino , Camundongos , Feminino , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Camundongos Transgênicos
3.
J Biol Chem ; 298(5): 101866, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35346687

RESUMO

Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.


Assuntos
Aprendizagem , Memória , Animais , Encéfalo/fisiologia , Memória/fisiologia , Neurônios/fisiologia
4.
Eur J Neurosci ; 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053204

RESUMO

Decades of scientific collaboration have brought innovation, prosperity and wide societal benefit to Europe. However, recent political events have impacted pan-European research and collaborations, and solutions are yet to materialise. Here, we argue that a vibrant, united European Research community led by its members and independent from political bodies is needed for Europe to remain a successful, interconnected scientific hub and keep delivering globally competitive science. The Federation of European Neuroscience Societies (FENS) is in an ideal position to play a paramount role in this endeavour.

5.
Nature ; 531(7595): 508-12, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26982728

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Modelos Animais de Doenças , Memória de Longo Prazo/fisiologia , Envelhecimento , Amnésia/patologia , Amnésia/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Intervenção Médica Precoce , Humanos , Potenciação de Longa Duração , Masculino , Memória Episódica , Camundongos , Camundongos Transgênicos , Optogenética , Placa Amiloide , Presenilina-1/genética , Sinapses/metabolismo , Transgenes/genética , Proteínas tau/genética
9.
Appl Environ Microbiol ; 83(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526795

RESUMO

Feed efficiency (FE) is critical in pig production for both economic and environmental reasons. As the intestinal microbiota plays an important role in energy harvest, it is likely to influence FE. Therefore, our aim was to characterize the intestinal microbiota of pigs ranked as low, medium, and high residual feed intake ([RFI] a metric for FE), where genetic, nutritional, and management effects were minimized, to explore a possible link between the intestinal microbiota and FE. Eighty-one pigs were ranked according to RFI between weaning and day 126 postweaning, and 32 were selected as the extremes in RFI (12 low, 10 medium, and 10 high). Intestinal microbiota diversity, composition, and predicted functionality were assessed by 16S rRNA gene sequencing. Although no differences in microbial diversity were found, some RFI-associated compositional differences were revealed, principally among members of Firmicutes, predominantly in feces at slaughter (albeit mainly for low-abundance taxa). In particular, microbes associated with a leaner and healthier host (e.g., Christensenellaceae, Oscillibacter, and Cellulosilyticum) were enriched in low RFI (more feed-efficient) pigs. Differences were also observed in the ileum of low RFI pigs; most notably, Nocardiaceae (Rhodococcus) were less abundant. Predictive functional analysis suggested improved metabolic capabilities in these animals, especially within the ileal microbiota. Higher ileal isobutyric acid concentrations were also found in low RFI pigs. Overall, the differences observed within the intestinal microbiota of low RFI pigs compared with that of their high RFI counterparts, albeit relatively subtle, suggest a possible link between the intestinal microbiota and FE in pigs.IMPORTANCE This study is one of the first to show that differences in intestinal microbiota composition, albeit subtle, may partly explain improved feed efficiency (FE) in low residual feed intake (RFI) pigs. One of the main findings is that, although microbial diversity did not differ among animals of varying FE, specific intestinal microbes could potentially be linked with porcine FE. However, as the factors impacting FE are still not fully understood, intestinal microbiota composition may not be a major factor determining differences in FE. Nonetheless, this work has provided a potential set of microbial biomarkers for FE in pigs. Although culturability could be a limiting factor and intervention studies are required, these taxa could potentially be targeted in the future to manipulate the intestinal microbiome so as to improve FE in pigs. If successful, this has the potential to reduce both production costs and the environmental impact of pig production.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Suínos/microbiologia , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Ingestão de Alimentos , Fezes , Feminino , Mucosa Intestinal/metabolismo , Masculino , Filogenia , Suínos/metabolismo
10.
BMC Biol ; 14: 40, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27197636

RESUMO

The mechanism of memory remains one of the great unsolved problems of biology. Grappling with the question more than a hundred years ago, the German zoologist Richard Semon formulated the concept of the engram, lasting connections in the brain that result from simultaneous "excitations", whose precise physical nature and consequences were out of reach of the biology of his day. Neuroscientists now have the knowledge and tools to tackle this question, however, and this Forum brings together leading contemporary views on the mechanisms of memory and what the engram means today.


Assuntos
Encéfalo/fisiologia , Memória/fisiologia , Animais , Epigenômica , Hipocampo/fisiologia , Humanos , Modelos Animais , Neurônios/fisiologia , Coluna Vertebral/fisiologia , Sinapses/fisiologia
11.
Nat Rev Neurosci ; 10(10): 701-12, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19738623

RESUMO

Understanding the evolutionary origins of behaviour is a central aim in the study of biology and may lead to insights into human disorders. Synaptic transmission is observed in a wide range of invertebrate and vertebrate organisms and underlies their behaviour. Proteomic studies of the molecular components of the highly complex mammalian postsynaptic machinery point to an ancestral molecular machinery in unicellular organisms--the protosynapse--that existed before the evolution of metazoans and neurons, and hence challenges existing views on the origins of the brain. The phylogeny of the molecular components of the synapse provides a new model for studying synapse diversity and complexity, and their implications for brain evolution.


Assuntos
Evolução Biológica , Neurônios/citologia , Sinapses/fisiologia , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Comunicação Celular/fisiologia , Humanos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia
12.
Adv Neurobiol ; 38: 273-302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008021

RESUMO

Engram labelling and manipulation methodologies are now a staple of contemporary neuroscientific practice, giving the impression that the physical basis of engrams has been discovered. Despite enormous progress, engrams have not been clearly identified, and it is unclear what they should look like. There is an epistemic bias in engram neuroscience toward characterizing biological changes while neglecting the development of theory. However, the tools of engram biology are exciting precisely because they are not just an incremental step forward in understanding the mechanisms of plasticity and learning but because they can be leveraged to inform theory on one of the fundamental mysteries in neuroscience-how and in what format the brain stores information. We do not propose such a theory here, as we first require an appreciation for what is lacking. We outline a selection of issues in four sections from theoretical biology and philosophy that engram biology and systems neuroscience generally should engage with in order to construct useful future theoretical frameworks. Specifically, what is it that engrams are supposed to explain? How do the different building blocks of the brain-wide engram come together? What exactly are these component parts? And what information do they carry, if they carry anything at all? Asking these questions is not purely the privilege of philosophy but a key to informing scientific hypotheses that make the most of the experimental tools at our disposal. The risk for not engaging with these issues is high. Without a theory of what engrams are, what they do, and the wider computational processes they fit into, we may never know when they have been found.


Assuntos
Encéfalo , Animais , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurociências
13.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790352

RESUMO

Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, that allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal vCA1 region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components respectively. Finally, we identify a synaptic plasticity mechanism mediated by PSD-95, which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.

14.
Curr Biol ; 33(24): 5368-5380.e5, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37992719

RESUMO

Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, which allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here, we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal ventral CA1 (vCA1) region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components, respectively. Finally, we identify a synaptic plasticity mechanism mediated by postsynaptic density protein 95 (PSD-95), which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.


Assuntos
Região CA1 Hipocampal , Rememoração Mental , Região CA1 Hipocampal/fisiologia , Rememoração Mental/fisiologia , Aprendizagem , Plasticidade Neuronal/fisiologia , Tonsila do Cerebelo
15.
Cell Rep ; 42(8): 112999, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590145

RESUMO

Long-term memories are stored as configurations of neuronal ensembles, termed engrams. Although investigation of engram cell properties and functionality in memory recall has been extensive, less is known about how engram cells are affected by forgetting. We describe a form of interference-based forgetting using an object memory behavioral paradigm. By using activity-dependent cell labeling, we show that although retroactive interference results in decreased engram cell reactivation during recall trials, optogenetic stimulation of the labeled engram cells is sufficient to induce memory retrieval. Forgotten engrams may be reinstated via the presentation of similar or related environmental information. Furthermore, we demonstrate that engram activity is necessary for interference to occur. Taken together, these findings indicate that retroactive interference modules engram expression in a manner that is both reversible and updatable. Inference may constitute a form of adaptive forgetting where, in everyday life, new perceptual and environmental inputs modulate the natural forgetting process.


Assuntos
Memória de Longo Prazo , Memória , Rememoração Mental , Optogenética
16.
Sci Adv ; 9(45): eadg9921, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939176

RESUMO

Infantile amnesia is possibly the most ubiquitous form of memory loss in mammals. We investigated how memories are stored in the brain throughout development by integrating engram labeling technology with mouse models of infantile amnesia. Here, we found a phenomenon in which male offspring in maternal immune activation models of autism spectrum disorder do not experience infantile amnesia. Maternal immune activation altered engram ensemble size and dendritic spine plasticity. We rescued the same apparently forgotten infantile memories in neurotypical mice by optogenetically reactivating dentate gyrus engram cells labeled during complex experiences in infancy. Furthermore, we permanently reinstated lost infantile memories by artificially updating the memory engram, demonstrating that infantile amnesia is a reversible process. Our findings suggest not only that infantile amnesia is due to a reversible retrieval deficit in engram expression but also that immune activation during development modulates innate, and reversible, forgetting switches that determine whether infantile amnesia will occur.


Assuntos
Transtorno do Espectro Autista , Humanos , Lactente , Masculino , Camundongos , Animais , Amnésia , Encéfalo , Modelos Animais de Doenças , Cabeça , Mamíferos
17.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35259091

RESUMO

The thalamus is a gateway to the cortex. Cortical encoding of complex behavior can therefore only be understood by considering the thalamic processing of sensory and internally generated information. Here, we use two-photon Ca2+ imaging and optogenetics to investigate the role of axonal projections from the posteromedial nucleus of the thalamus (POm) to the forepaw area of the mouse primary somatosensory cortex (forepaw S1). By recording the activity of POm axonal projections within forepaw S1 during expert and chance performance in two tactile goal-directed tasks, we demonstrate that POm axons increase activity in the response and, to a lesser extent, reward epochs specifically during correct HIT performance. When performing at chance level during learning of a new behavior, POm axonal activity was decreased to naive rates and did not correlate with task performance. However, once evoked, the Ca2+ transients were larger than during expert performance, suggesting POm input to S1 differentially encodes chance and expert performance. Furthermore, the POm influences goal-directed behavior, as photoinactivation of archaerhodopsin-expressing neurons in the POm decreased the learning rate and overall success in the behavioral task. Taken together, these findings expand the known roles of the higher-thalamic nuclei, illustrating the POm encodes and influences correct action during learning and performance in a sensory-based goal-directed behavior.


Assuntos
Objetivos , Córtex Somatossensorial , Animais , Camundongos , Optogenética , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos , Tálamo/fisiologia
18.
Curr Opin Neurobiol ; 67: 215-225, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33812274

RESUMO

Understanding memory requires an explanation for how information can be stored in the brain in a stable state. The change in the brain that accounts for a given memory is referred to as an engram. In recent years, the term engram has been operationalized as the cells that are activated by a learning experience, undergoes plasticity, and are sufficient and necessary for memory recall. Using this framework, and a growing toolbox of related experimental techniques, engram manipulation has become a central topic in behavioral, systems, and molecular neuroscience. Recent research on the topic has provided novel insights into the mechanisms of long-term memory storage, and its overlap with instinct. We propose that memory and instinct may be embodied as isomorphic topological structures within the brain's microanatomical circuitry.


Assuntos
Aprendizagem , Memória , Encéfalo , Armazenamento e Recuperação da Informação
19.
Animals (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34827810

RESUMO

The in-vitro ileal digestibility of dry matter (DM), organic matter (OM), and crude protein (CP) of field beans treated with propionic acid (trFB) and extruded trFB (exFB) was determined in experiment 1. The DE and dCP values of trFB and exFB were determined using the difference method in experiment 2. The effect of replacing SBM with trFB and exFB in grow-finisher diets on growth, carcass quality, apparent ileal digestibility (AiD), and total tract digestibility (ATTD) of DM, OM, gross energy (GE), and CP were investigated in experiment 3. In exp. 1, in-vitro digestibility of exFB compared to trFB was unchanged for DM (p = 0.12), increased for OM (p < 0.05), and increased for CP (p < 0.05). In exp. 2, the DE value of trFB and exFB was 14.38 and 15.75 MJ/kg respectively; and the dCP value was 21.35% and 21.42% respectively (on DM basis). In exp. 3, ADFI was higher for pigs fed trFB and exFB compared to the control diet (CON; p < 0.05), while ADG, FCR and carcass quality parameters of pigs did not differ among treatments (p > 0.05).

20.
Curr Biol ; 30(12): R717-R720, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32574637

RESUMO

Memories are crucial for making accurate predictions about our environment. New research suggests that, in the face of limited perceptual evidence, our brains quickly form generalized contextual memory engrams that can be refined based on future, confirmatory or misleading, experience.


Assuntos
Encéfalo , Memória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA