Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Senses ; 42(8): 683-698, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981825

RESUMO

Nasal airflow plays a critical role in olfaction by transporting odorant from the environment to the olfactory epithelium, where chemical detection occurs. Most studies of olfaction neglect the unsteadiness of sniffing and assume that nasal airflow and odorant transport are "quasi-steady," wherein reality most mammals "sniff." Here, we perform computational fluid dynamics simulations of airflow and odorant deposition in an anatomically accurate model of the coyote (Canis latrans) nasal cavity during quiet breathing, a notional quasi-steady sniff, and unsteady sniffing to: quantify the influence of unsteady sniffing, assess the validity of the quasi-steady assumption, and investigate the functional advantages of sniffing compared to breathing. Our results reveal that flow unsteadiness during sniffing does not appreciably influence qualitative (gross airflow and odorant deposition patterns) or quantitative (time-averaged olfactory flow rate and odorant uptake) measures of olfactory function. A quasi-steady approximation is, therefore, justified for simulating time-averaged olfactory function in the canine nose. Simulations of sniffing versus quiet breathing demonstrate that sniffing delivers about 2.5 times more air to the olfactory recess and results in 2.5-3 times more uptake of highly- and moderately-soluble odorants in the sensory region per unit time, suggesting one reason why dogs actively sniff. Simulations also reveal significantly different deposition patterns in the olfactory region during inspiration for different odorants, and that during expiration there is little retronasal odorant deposition in the sensory region. These results significantly improve our understanding of canine olfaction, and have several practical implications regarding computer simulation of olfactory function.


Assuntos
Coiotes/fisiologia , Inalação/fisiologia , Cavidade Nasal/fisiologia , Odorantes , Olfato/fisiologia , Animais , Feminino , Simulação de Dinâmica Molecular
2.
Pharm Res ; 33(4): 909-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26689412

RESUMO

PURPOSE: The objective of this study was to use a recently developed nasal dissolution, absorption, and clearance (DAC) model to evaluate the extent to which suspended drug particle size influences nasal epithelial drug absorption for a spray product. METHODS: Computational fluid dynamics (CFD) simulations of mucociliary clearance and drug dissolution were used to calculate total and microscale epithelial absorption of drug delivered with a nasal spray pump. Ranges of suspended particle sizes, drug solubilities, and partition coefficients were evaluated. RESULTS: Considering mometasone furoate as an example, suspended drug particle sizes in the range of 1-5 µm did not affect the total nasal epithelial uptake. However, the microscale absorption of suspended drug particles with low solubilities was affected by particle size and this controlled the extent to which the drug penetrated into the distal nasal regions. CONCLUSIONS: The nasal-DAC model was demonstrated to be a useful tool in determining the nasal exposure of spray formulations with different drug particle sizes and solubilities. Furthermore, the model illustrated a new strategy for topical nasal drug delivery in which drug particle size is selected to increase the region of epithelial surface exposure using mucociliary clearance while minimizing the drug dose exiting the nasopharynx.


Assuntos
Aerossóis/farmacocinética , Antialérgicos/farmacocinética , Furoato de Mometasona/farmacocinética , Cavidade Nasal/metabolismo , Mucosa Respiratória/metabolismo , Administração Intranasal , Aerossóis/administração & dosagem , Antialérgicos/administração & dosagem , Simulação por Computador , Humanos , Modelos Biológicos , Furoato de Mometasona/administração & dosagem , Sprays Nasais , Tamanho da Partícula , Solubilidade
3.
Ann Biomed Eng ; 48(5): 1475-1490, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32034607

RESUMO

Computer modeling and simulation is a powerful tool for assessing the performance of medical devices such as bioprosthetic heart valves (BHVs) that promises to accelerate device design and regulation. This study describes work to develop dynamic computer models of BHVs in the aortic test section of an experimental pulse-duplicator platform that is used in academia, industry, and regulatory agencies to assess BHV performance. These computational models are based on a hyperelastic finite element extension of the immersed boundary method for fluid-structure interaction (FSI). We focus on porcine tissue and bovine pericardial BHVs, which are commonly used in surgical valve replacement. We compare our numerical simulations to experimental data from two similar pulse duplicators, including a commercial ViVitro system and a custom platform related to the ViVitro pulse duplicator. Excellent agreement is demonstrated between the computational and experimental results for bulk flow rates, pressures, valve open areas, and the timing of valve opening and closure in conditions commonly used to assess BHV performance. In addition, reasonable agreement is demonstrated for quantitative measures of leaflet kinematics under these same conditions. This work represents a step towards the experimental validation of this FSI modeling platform for evaluating BHVs.


Assuntos
Frequência Cardíaca , Próteses Valvulares Cardíacas , Modelos Cardiovasculares , Animais , Bioprótese , Bovinos , Valvas Cardíacas/fisiologia , Suínos
4.
Biol Open ; 8(10)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649069

RESUMO

The idea that the vertebrate nasal cavity operates like a gas chromatograph to separate and discriminate odors, referred to herein as the 'chromatographic theory' (CT), has a long and interesting history. Though the last decade has seen renewed interest in the notion, its validity remains in question. Here we examine a necessary condition of the theory: a correlation between nasal odor deposition patterns based on mucus solubility and the distribution of olfactory sensory neuron odotypes. Our recent work in the mouse failed to find such a relationship even across large sorption gradients within the olfactory epithelium (OE). However, these studies did not test extremely soluble odorants or low odor concentrations, factors that could explain our inability to find supporting evidence for the CT. The current study combined computational fluid dynamics (CFD) simulations of odor sorption patterns and electro-olfactogram (EOG) measurements of olfactory sensory neuron responses. The odorants tested were at the extremes of mucus solubility and at a range of concentrations. Results showed no relationship between local odor sorption patterns and EOG response maps. Together, results again failed to support a necessary condition of the CT casting further doubt on the viability of this classical odor coding mechanism.

5.
J Aerosol Med Pulm Drug Deliv ; 29(5): 416-431, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26824178

RESUMO

PURPOSE: The objective of this study was to develop a computational fluid dynamics (CFD) model to predict the deposition, dissolution, clearance, and absorption of pharmaceutical particles in the human nasal cavity. METHODS: A three-dimensional nasal cavity geometry was converted to a surface-based model, providing an anatomically-accurate domain for the simulations. Particle deposition data from a commercial nasal spray product was mapped onto the surface model, and a mucus velocity field was calculated and validated with in vivo nasal clearance rates. A submodel for the dissolution of deposited particles was developed and validated based on comparisons to existing in vitro data for multiple pharmaceutical products. A parametric study was then performed to assess sensitivity of epithelial drug uptake to model conditions and assumptions. RESULTS: The particle displacement distance (depth) in the mucus layer had a modest effect on overall drug absorption, while the mucociliary clearance rate was found to be primarily responsible for drug uptake over the timescale of nasal clearance for the corticosteroid mometasone furoate (MF). The model revealed that drug deposition in the nasal vestibule (NV) could slowly be transported into the main passage (MP) and then absorbed through connection of the liquid layer in the NV and MP regions. As a result, high intersubject variability in cumulative uptake was predicted, depending on the length of time the NV dose was left undisturbed without blowing or wiping the nose. CONCLUSIONS: This study has developed, for the first time, a complete CFD model of nasal aerosol delivery from the point of spray formation through absorption at the respiratory epithelial surface. For the development and assessment of nasal aerosol products, this CFD-based in silico model provides a new option to complement existing in vitro nasal cast studies of deposition and in vivo imaging experiments of clearance.

6.
J Pharm Sci ; 105(6): 1995-2004, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27238495

RESUMO

The objective of this study was to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics, to in vivo human pharmacokinetic plasma concentration profiles. This is accomplished through the use of computational fluid dynamics simulations coupled with compartmental pharmacokinetic modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics, and clinical studies.


Assuntos
Simulação por Computador , Hidrodinâmica , Modelos Biológicos , Cavidade Nasal/metabolismo , Sprays Nasais , Estudo de Prova de Conceito , Administração Intranasal/métodos , Humanos , Cavidade Nasal/efeitos dos fármacos
7.
PLoS One ; 8(9): e72271, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023732

RESUMO

The odorant partition coefficient is a physicochemical property that has been shown to dramatically influence odorant deposition patterns in the mammalian nose, leading to a chromatographic separation of odorants along the sensory epithelium. It is unknown whether a similar phenomenon occurs in fish. Here we utilize molecular dynamics simulations, based on a simplified molecular model of olfactory mucus, to calculate water/mucus partition coefficients for amino acid odorants (alanine, glycine, cysteine, and valine) that are known to elicit feeding behavior in fish. Both fresh water and salt water environments are considered. In fresh water, all four amino acids prefer the olfactory mucus phase to water, and the partition coefficient is shown to correlate with amino acid hydrophobicity. In salt water, a reversal in odorant partitioning is found, where each of the feeding stimulants (except glycine) prefer the water phase to olfactory mucus. This is due to the interactions between the salt ions and the odorant molecules (in the water phase), and between the salt and simplified mucin (in the olfactory mucus phase). Thus, slightly different odorant deposition patterns may occur in the fish olfactory organ in fresh and salt water environments. However, in both underwater environments we found that the variation of the water/mucus odorant partition coefficient is approximately one order of magnitude, in stark contrast to air/mucus odorant partition coefficients that can span up to six orders of magnitude. We therefore anticipate relatively similar deposition patterns for most amino acid odorants in the fish olfactory chamber. Thus, in contrast to terrestrial species, living in an underwater environment may preclude appreciable chromatographic odorant separation that may be used for spatial coding of odor identity across the olfactory epithelium. This is consistent with the reported lack of spatial organization of olfactory receptor neurons in the fish olfactory epithelium.


Assuntos
Simulação de Dinâmica Molecular , Muco/química , Água/química , Animais , Peixes , Odorantes/análise , Receptores Odorantes/metabolismo
8.
PLoS One ; 8(3): e59783, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555780

RESUMO

The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory chambers, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics of olfaction in Sphyrna tudes based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Computed external flow patterns elucidate the occurrence of flow phenomena that result in high and low pressures at the incurrent and excurrent nostrils, respectively, which induces flow through the olfactory chamber. The major (prenarial) nasal groove along the cephalofoil is shown to facilitate sampling of a large spatial extent (i.e., an extended hydrodynamic "reach") by directing oncoming flow towards the incurrent nostril. Further, both the major and minor nasal grooves redirect some flow away from the incurrent nostril, thereby limiting the amount of fluid that enters the olfactory chamber. Internal hydrodynamic flow patterns are also revealed, where we show that flow rates within the sensory channels between olfactory lamellae are passively regulated by the apical gap, which functions as a partial bypass for flow in the olfactory chamber. Consequently, the hammerhead shark appears to utilize external (major and minor nasal grooves) and internal (apical gap) flow regulation mechanisms to limit water flow between the olfactory lamellae, thus protecting these delicate structures from otherwise high flow rates incurred by sampling a larger area.


Assuntos
Nariz/fisiologia , Tubarões/fisiologia , Olfato/fisiologia , Animais , Hidrodinâmica , Imageamento por Ressonância Magnética , Modelos Anatômicos , Modelos Teóricos , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/fisiologia , Nariz/anatomia & histologia , Odorantes , Mucosa Olfatória/patologia , Propriedades de Superfície , Microtomografia por Raio-X
9.
Anat Rec (Hoboken) ; 294(6): 1045-56, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21538925

RESUMO

From high-resolution (65 µm) data acquired by magnetic resonance imaging, we have reconstructed the nasal passageway of a single adult hagfish specimen (probably Eptatretus stoutii). We have used this reconstruction to investigate how the anatomy and morphometry of the nasal passageway influence the olfactory ability of the hagfish. We found that the long, broad section of the passageway preceding the nasal chamber will delay the response to an odor by 1-2 s. Diffusion of odorant to the olfactory epithelium, on which the olfactory sensitivity of an animal depends, will be favored by the relatively large surface area of the olfactory epithelium (∼140 mm(2) ) and a modest expansion in the nasal chamber. Oscillating flow (0.3-0.4 Hz) within the narrow (65-130 µm) sensory channels of the nasal chamber is laminar (Reynolds number ∼ 5) and quasi-steady (Womersley number generally less than one). Distribution of flow over the olfactory epithelium may be aided by: (a) a narrowing before the nasal chamber; (b) partial blockage of the nasal passageway by a protrusion on the central olfactory lamella; and (c) the inward inclination of the olfactory lamellae.


Assuntos
Feiticeiras (Peixe) , Imageamento Tridimensional/métodos , Modelos Anatômicos , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/fisiologia , Olfato/fisiologia , Animais , Imageamento por Ressonância Magnética/métodos , Odorantes , Mucosa Olfatória/anatomia & histologia , Mucosa Olfatória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA