Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Biol Chem ; 300(4): 107151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462161

RESUMO

The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.


Assuntos
Adaptação Fisiológica , Aminoácidos , Fator de Iniciação 2 em Eucariotos , Estresse Fisiológico , Animais , Humanos , Aminoácidos/deficiência , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 119(42): e2202133119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215479

RESUMO

Unfolded protein response (UPR) is the mechanism by which cells control endoplasmic reticulum (ER) protein homeostasis. ER proteostasis is essential to adapt to cell proliferation and regeneration in development and tumorigenesis, but mechanisms linking UPR, growth control, and cancer progression remain unclear. Here, we report that the Ire1/Xbp1s pathway has surprisingly oncogenic and tumor-suppressive roles in a context-dependent manner. Activation of Ire1/Xbp1s up-regulates their downstream target Bip, which sequesters Yorkie (Yki), a Hippo pathway transducer, in the cytoplasm to restrict Yki transcriptional output. This regulation provides an endogenous defensive mechanism in organ size control, intestinal homeostasis, and regeneration. Unexpectedly, Xbp1 ablation promotes tumor overgrowth but suppresses invasiveness in a Drosophila cancer model. Mechanistically, hyperactivated Ire1/Xbp1s signaling in turn induces JNK-dependent developmental and oncogenic cell migration and epithelial-mesenchymal transition (EMT) via repression of Yki. In humans, a negative correlation between XBP1 and YAP (Yki ortholog) target gene expression specifically exists in triple-negative breast cancers (TNBCs), and those with high XBP1 or HSPA5 (Bip ortholog) expression have better clinical outcomes. In human TNBC cell lines and xenograft models, ectopic XBP1s or HSPA5 expression alleviates tumor growth but aggravates cell migration and invasion. These findings uncover a conserved crosstalk between the Ire1/Xbp1s and Hippo signaling pathways under physiological settings, as well as a crucial role of Bip-Yki interaction in tumorigenesis that is shared from Drosophila to humans.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Carcinogênese/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Endorribonucleases , Via de Sinalização Hippo , Humanos , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
3.
PLoS Genet ; 17(10): e1009551, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714826

RESUMO

Rhodopsins are light-detecting proteins coupled with retinal chromophores essential for visual function. Coincidentally, dysfunctional Rhodopsin homeostasis underlies retinal degeneration in humans and model organisms. Drosophila ninaEG69D mutant is one such example, where the encoded Rh1 protein imposes endoplasmic reticulum (ER) stress and causes light-dependent retinal degeneration. The underlying reason for such light-dependency remains unknown. Here, we report that Drosophila fatty acid binding protein (fabp) is a gene induced in ninaEG69D/+ photoreceptors, and regulates light-dependent Rhodopsin-1 (Rh1) protein clearance and photoreceptor survival. Specifically, our photoreceptor-specific gene expression profiling study in ninaEG69D/+ flies revealed increased expression of fabp together with other genes that control light-dependent Rh1 protein degradation. fabp induction in ninaEG69D photoreceptors required vitamin A and its transporter genes. In flies reared under light, loss of fabp caused an accumulation of Rh1 proteins in cytoplasmic vesicles. The increase in Rh1 levels under these conditions was dependent on Arrestin2 that mediates feedback inhibition of light-activated Rh1. fabp mutants exhibited light-dependent retinal degeneration, a phenotype also found in other mutants that block light-induced Rh1 degradation. These observations reveal a previously unrecognized link between light-dependent Rh1 proteostasis and the ER-stress imposing ninaEG69D mutant that cause retinal degeneration.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Animais , Mutação/genética , Fenótipo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Transcriptoma/genética
4.
Dev Biol ; 478: 205-211, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265355

RESUMO

Ire1 is an endoplasmic reticulum (ER) transmembrane RNase that cleaves substrate mRNAs to help cells adapt to ER stress. Because there are cell types with physiological ER stress, loss of Ire1 results in metabolic and developmental defects in diverse organisms. In Drosophila, Ire1 mutants show developmental defects at early larval stages and in pupal eye photoreceptor differentiation. These Drosophila studies relied on a single Ire1 loss of function allele with a Piggybac insertion in the coding sequence. Here, we report that an Ire1 allele with a specific impairment in the RNase domain, H890A, unmasks previously unrecognized Ire1 phenotypes in Drosophila eye pigmentation. Specifically, we found that the adult eye pigmentation is altered, and the pigment granules are compromised in Ire1H890A homozygous mosaic eyes. Furthermore, the Ire1H890A mutant eyes had dramatically reduced Rhodopsin-1 protein levels. Drosophila eye pigment granules are most notably associated with late endosome/lysosomal defects. Our results indicate that the loss of Ire1, which would impair ER homeostasis, also results in altered adult eye pigmentation.


Assuntos
Olho Composto de Artrópodes/química , Olho Composto de Artrópodes/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Pigmentos Biológicos/análise , Alelos , Animais , Olho Composto de Artrópodes/ultraestrutura , Drosophila melanogaster , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Cor de Olho , Mutação , Fenotiazinas/análise , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentação , Pteridinas/análise , Rodopsina/metabolismo
5.
J Cell Sci ; 132(5)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770479

RESUMO

Eukaryotic cells respond to an overload of unfolded proteins in the endoplasmic reticulum (ER) by activating signaling pathways that are referred to as the unfolded protein response (UPR). Much UPR research has been conducted in cultured cells that exhibit no baseline UPR activity until they are challenged by ER stress initiated by chemicals or mutant proteins. At the same time, many genes that mediate UPR signaling are essential for the development of organisms ranging from Drosophila and fish to mice and humans, indicating that there is physiological ER stress that requires UPR in normally developing animal tissues. Recent studies have elucidated the tissue-specific roles of all three branches of UPR in distinct developing tissues of Drosophila, fish and mammals. As discussed in this Review, these studies not only reveal the physiological functions of the UPR pathways but also highlight a surprising degree of specificity associated with each UPR branch in development.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Animais , Drosophila , Peixes , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Especificidade de Órgãos , Transdução de Sinais
6.
Neurobiol Dis ; 137: 104770, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31982516

RESUMO

We have derived single-chain variable fragments (scFv) from tau antibody hybridomas and previously shown their promise as imaging diagnostic agents. Here, we examined the therapeutic potential of anti-tau scFv in transgenic Drosophila models that express in neurons wild-type (WT) human tau (htau) or the human tauopathy mutation R406W. scFv expressing flies were crossed with the tauopathy flies and analyzed. Overall, the survival curves differed significantly (p < .0001). Control flies not expressing htau survived the longest, whereas R406W expressing flies had the shortest lifespan, which was greatly prolonged by co-expressing the anti-tau scFv (p < .0001). Likewise, htau WT expressing flies had a moderately short lifespan, which was prolonged by co-expressing the anti-tau scFv (p < .01). In addition, the htau expression impaired wing expansion after eclosion (p < .0001), and caused progressive abdomen expansion (p < .0001). These features were more severe in htau R406W flies than in htau WT flies. Importantly, both phenotypes were prevented by co-expression of the anti-tau scFv (p < .01-0.0001). Lastly, brain analyses revealed scFv-mediated tau clearance (p < .05-0.01), and its prevention of tau-mediated neurotoxicity (p < .05-0.001). In summary, these findings support the therapeutic potential of an anti-tau scFv, including as gene therapies, and the use of Drosophila models for such screening.


Assuntos
Anticorpos de Cadeia Única/metabolismo , Anticorpos de Cadeia Única/farmacologia , Tauopatias/prevenção & controle , Proteínas tau/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Drosophila , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Tauopatias/metabolismo , Proteínas tau/metabolismo
7.
J Cell Sci ; 130(18): 3040-3049, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28775151

RESUMO

IRE1 mediates the unfolded protein response (UPR) in part by regulating XBP1 mRNA splicing in response to endoplasmic reticulum (ER) stress. In cultured metazoan cells, IRE1 also exhibits XBP1-independent biochemical activities. IRE1 and XBP1 are developmentally essential genes in Drosophila and mammals, but the source of the physiological ER stress and the relative contributions of XBP1 activation versus other IRE1 functions to development remain unknown. Here, we employed Drosophila to address this question. Explicitly, we find that specific regions of the developing alimentary canal, fat body and the male reproductive organ are the sources of physiological stress that require Ire1 and Xbp1 for resolution. In particular, the developmental lethality associated with an Xbp1 null mutation was rescued by transgenic expression of Xbp1 in the alimentary canal. The domains of IRE1 that are involved in detecting unfolded proteins, cleaving RNAs and activating XBP1 splicing were all essential for development. The earlier onset of developmental defects in Ire1 mutant larvae compared to in Xbp1-null flies supports a developmental role for XBP1-independent IRE1 RNase activity, while challenging the importance of RNase-independent effector mechanisms of Drosophila IRE1 function.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Endorribonucleases/metabolismo , Estresse Fisiológico , Animais , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Imunidade Inata , Larva/metabolismo , Masculino , Mutação/genética , Transgenes , Regulação para Cima/genética
8.
PLoS Genet ; 11(5): e1005220, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945494

RESUMO

Intestinal homeostasis requires precise control of intestinal stem cell (ISC) proliferation. In Drosophila, this control declines with age largely due to chronic activation of stress signaling and associated chronic inflammatory conditions. An important contributor to this condition is the age-associated increase in endoplasmic reticulum (ER) stress. Here we show that the PKR-like ER kinase (PERK) integrates both cell-autonomous and non-autonomous ER stress stimuli to induce ISC proliferation. In addition to responding to cell-intrinsic ER stress, PERK is also specifically activated in ISCs by JAK/Stat signaling in response to ER stress in neighboring cells. The activation of PERK is required for homeostatic regeneration, as well as for acute regenerative responses, yet the chronic engagement of this response becomes deleterious in aging flies. Accordingly, knocking down PERK in ISCs is sufficient to promote intestinal homeostasis and extend lifespan. Our studies highlight the significance of the PERK branch of the unfolded protein response of the ER (UPRER) in intestinal homeostasis and provide a viable strategy to improve organismal health- and lifespan.


Assuntos
Proliferação de Células , Drosophila/genética , Estresse do Retículo Endoplasmático , Intestinos/citologia , Células-Tronco/citologia , eIF-2 Quinase/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Homeostase , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Células-Tronco/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética
9.
PLoS Genet ; 10(8): e1004568, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166757

RESUMO

The Unfolded Protein Response of the endoplasmic reticulum (UPRER) controls proteostasis by adjusting the protein folding capacity of the ER to environmental and cell-intrinsic conditions. In metazoans, loss of proteostasis results in degenerative and proliferative diseases and cancers. The cellular and molecular mechanisms causing these phenotypes remain poorly understood. Here we show that the UPRER is a critical regulator of intestinal stem cell (ISC) quiescence in Drosophila melanogaster. We find that ISCs require activation of the UPRER for regenerative responses, but that a tissue-wide increase in ER stress triggers ISC hyperproliferation and epithelial dysplasia in aging animals. These effects are mediated by ISC-specific redox signaling through Jun-N-terminal Kinase (JNK) and the transcription factor CncC. Our results identify a signaling network of proteostatic and oxidative stress responses that regulates ISC function and regenerative homeostasis in the intestinal epithelium.


Assuntos
Intestinos/citologia , Estresse Oxidativo/genética , Células-Tronco/citologia , Resposta a Proteínas não Dobradas/genética , Animais , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Retículo Endoplasmático/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais
10.
PLoS Genet ; 10(5): e1004357, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24809668

RESUMO

Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor.


Assuntos
Genes do Retinoblastoma , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Wnt/metabolismo , Animais , Apoptose , Sequência de Bases , Primers do DNA , Drosophila , Genes Letais , Alvo Mecanístico do Complexo 1 de Rapamicina , Reação em Cadeia da Polimerase
11.
Dis Model Mech ; 17(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207054

RESUMO

The translation elongation factor eEF1α (eukaryotic elongation factor 1α) mediates mRNA translation by delivering aminoacyl-tRNAs to ribosomes. eEF1α also has other reported roles, including the regulation of actin dynamics. However, these distinct roles of eEF1α are often challenging to uncouple and remain poorly understood in aging metazoan tissues. The genomes of mammals and Drosophila encode two eEF1α paralogs, with eEF1α1 expressed ubiquitously and eEF1α2 expression more limited to neurons and muscle cells. Here, we report that eEF1α2 plays a unique role in maintaining myofibril homeostasis during aging in Drosophila. Specifically, we generated an eEF1α2 null allele, which was viable and showed two distinct muscle phenotypes. In young flies, the mutants had thinner myofibrils in indirect flight muscles that could be rescued by expressing eEF1α1. With aging, the muscles of the mutant flies began showing abnormal distribution of actin and myosin in muscles, but without a change in actin and myosin protein levels. This age-related phenotype could not be rescued by eEF1α1 overexpression. These findings support an unconventional role of Drosophila eEF1α2 in age-related homeostasis of muscle myofibers.


Assuntos
Citoesqueleto de Actina , Envelhecimento , Proteínas de Drosophila , Drosophila melanogaster , Homeostase , Fator 1 de Elongação de Peptídeos , Animais , Envelhecimento/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Citoesqueleto de Actina/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Músculos/metabolismo , Fenótipo , Mutação/genética , Miofibrilas/metabolismo , Actinas/metabolismo , Miosinas/metabolismo
12.
Cell Death Dis ; 15(7): 543, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079958

RESUMO

Tauopathies are a group of neurodegenerative diseases characterized by the presence of tau inclusions. We have developed over fifty anti-tau single-domain antibodies (sdAbs) derived from phage display libraries of a llama immunized with recombinant and pathological tau immunogens. We examined the therapeutic potential of four of these sdAbs in a Drosophila tauopathy model following their transgenic expression either in all neurons or neuronal subtypes. Three of these sdAbs showed therapeutic potential in various assays, effectively clearing pathological tau and attenuating or preventing tau-induced phenotypes that typically manifest as defects in neuronal axonal transport, neurodegeneration, functional impairments, and shortened lifespan. Of these three, one sdAb was superior in every assay, which may at least in part be attributed to its tau-binding epitope. These findings support its development as a gene therapy for tauopathies.


Assuntos
Anticorpos de Domínio Único , Tauopatias , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/imunologia , Animais , Tauopatias/imunologia , Tauopatias/patologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Humanos , Modelos Animais de Doenças , Drosophila , Animais Geneticamente Modificados , Neurônios/metabolismo , Neurônios/patologia , Camelídeos Americanos/imunologia , Drosophila melanogaster/imunologia
13.
EMBO J ; 28(9): 1296-307, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19339992

RESUMO

The unfolded protein response (UPR) is a specific cellular process that allows the cell to cope with the overload of unfolded/misfolded proteins in the endoplasmic reticulum (ER). ER stress is commonly associated with degenerative pathologies, but its role in disease progression is still a matter for debate. Here, we found that mutations in the ER-resident chaperone, neither inactivation nor afterpotential A (NinaA), lead to mild ER stress, protecting photoreceptor neurons from various death stimuli in adult Drosophila. In addition, Drosophila S2 cultured cells, when pre-exposed to mild ER stress, are protected from H(2)O(2), cycloheximide- or ultraviolet-induced cell death. We show that a specific ER-mediated signal promotes antioxidant defences and inhibits caspase-dependent cell death. We propose that an immediate consequence of the UPR not only limits the accumulation of misfolded proteins but also protects tissues from harmful exogenous stresses.


Assuntos
Drosophila melanogaster/fisiologia , Retículo Endoplasmático/fisiologia , Degeneração Retiniana/metabolismo , Estresse Fisiológico/fisiologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Mutação , Células Fotorreceptoras/citologia , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Retina/citologia , Retina/efeitos dos fármacos , Retina/metabolismo , Degeneração Retiniana/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico/genética
14.
J Cell Sci ; 123(Pt 17): 2892-900, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20682638

RESUMO

The integrated stress response (ISR) protects cells from numerous forms of stress and is involved in the growth of solid tumours; however, it is unclear how the ISR acts on cellular proliferation. We have developed a model of ISR signalling with which to study its effects on tissue growth. Overexpression of the ISR kinase PERK resulted in a striking atrophic eye phenotype in Drosophila melanogaster that could be rescued by co-expressing the eIF2alpha phosphatase GADD34. A genetic screen of 3000 transposon insertions identified grapes, the gene that encodes the Drosophila orthologue of checkpoint kinase 1 (CHK1). Knockdown of grapes by RNAi rescued eye development despite ongoing PERK activation. In mammalian cells, CHK1 was activated by agents that induce ER stress, which resulted in a G2 cell cycle delay. PERK was both necessary and sufficient for CHK1 activation. These findings indicate that non-genotoxic misfolded protein stress accesses DNA-damage-induced cell cycle checkpoints to couple the ISR to cell cycle arrest.


Assuntos
Proteínas Quinases/fisiologia , Estresse Fisiológico/fisiologia , Animais , Ciclo Celular/fisiologia , Proliferação de Células , Quinase 1 do Ponto de Checagem , Dano ao DNA , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/fisiologia , Ativação Enzimática , Olho/crescimento & desenvolvimento , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Estresse Fisiológico/genética , Fosfatases cdc25/metabolismo , eIF-2 Quinase/biossíntese , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
15.
Proc Natl Acad Sci U S A ; 106(40): 17043-8, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19805114

RESUMO

Mutations in the rhodopsin gene that disrupt the encoded protein's folding properties are a major cause of autosomal dominant retinitis pigmentosa (ADRP). This disease is faithfully modeled in Drosophila where similar mutations in the ninaE gene, encoding rhodopsin-1 (Rh-1), cause ER stress and dominantly trigger age-related retinal degeneration. In addition, mutant flies bearing certain ninaE alleles have dramatically reduced Rh-1 protein levels, but the underlying mechanism for this reduction and significance of its contribution to the ADRP phenotype remains unclear. To address this question, we specifically analyzed the role of Drosophila genes homologous to the known yeast and animal regulators of the ER-associated degradation (ERAD) pathway, a process that reduces levels of misfolded proteins in the ER through proteasomal degradation. We found that loss-of-function of these putative ERAD factors resulted in increased levels of Rh-1 in ninaE mutant flies. Conversely, in an ER stress assay where mutant or wild-type Rh-1 were overexpressed in developing imaginal discs beyond the ER protein folding capacity of those cells, co-expression of certain ERAD factors was sufficient to reduce Rh-1 protein levels and to completely suppress ER stress reporter activation. Significantly, those ERAD factors that specifically reduced misfolded Rh-1 in the imaginal disc assay also delayed age-related retinal degeneration caused by an endogenous ninaE allele, indicating that ERAD acts as a protective mechanism against retinal degeneration in the Drosophila model for ADRP. These results suggest that manipulation of ERAD may serve as a powerful therapeutic strategy against a number of diseases associated with ER stress.


Assuntos
Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas do Olho/metabolismo , Degeneração Retiniana/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Mutação , Células Fotorreceptoras de Invertebrados/metabolismo , Dobramento de Proteína , Interferência de RNA , Degeneração Retiniana/genética , Rodopsina , Homologia de Sequência de Aminoácidos , Transdução de Sinais
16.
Methods Mol Biol ; 2378: 261-277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985706

RESUMO

Wildtype or mutant proteins expressed beyond the capacity of a cell's protein folding system could be detrimental to general cellular function and survival. In response to misfolded protein overload in the endoplasmic reticulum (ER), eukaryotic cells activate the Unfolded Protein Response (UPR) that helps cells restore protein homeostasis in the endoplasmic reticulum (ER). As part of the UPR, cells attenuate general mRNA translation and activate transcription factors that induce stress-responsive gene expression.UPR signaling draws research interest in part because conditions that cause chronic protein misfolding in the ER or those that impair UPR signaling underlie several diseases including neurodegeneration, diabetes, and cancers. Model organisms are frequently employed in the field as the UPR pathways are generally well-conserved throughout phyla. Here, we introduce experimental procedures to detect UPR in Drosophila melanogaster.


Assuntos
Drosophila , Estresse do Retículo Endoplasmático , Animais , Drosophila melanogaster/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas
17.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919148

RESUMO

Metazoans have evolved various quality control mechanisms to cope with cellular stress inflicted by external and physiological conditions. ATF4 is a major effector of the integrated stress response, an evolutionarily conserved pathway that mediates adaptation to various cellular stressors. Loss of function of Drosophila ATF4, encoded by the gene cryptocephal (crc), results in lethality during pupal development. The roles of crc in Drosophila disease models and in adult tissue homeostasis thus remain poorly understood. Here, we report that a protein-trap Minos-mediated integration cassette insertion in the crc locus generates a Crc-GFP fusion protein that allows visualization of Crc activity in vivo. This allele also acts as a hypomorphic mutant that uncovers previously unknown roles for crc. Specifically, the crc protein-trap line shows Crc-GFP induction in a Drosophila model for retinitis pigmentosa. This crc allele renders flies more vulnerable to amino acid deprivation and age-dependent retinal degeneration. These mutants also show defects in wing veins and oocyte maturation. Together, our data reveal previously unknown roles for crc in development, cellular homeostasis and photoreceptor survival. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila , Degeneração Retiniana , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Alelos , Animais , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Oogênese/genética , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
18.
Nat Cell Biol ; 4(6): 432-8, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12021769

RESUMO

Cell death in higher organisms is negatively regulated by Inhibitor of Apoptosis Proteins (IAPs), which contain a ubiquitin ligase motif, but how ubiquitin-mediated protein degradation is regulated during apoptosis is poorly understood. Here, we report that Drosophila melanogaster IAP1 (DIAP1) auto-ubiquitination and degradation is actively regulated by Reaper (Rpr) and UBCD1. We show that Rpr, but not Hid (head involution defective), promotes significant DIAP1 degradation. Rpr-mediated DIAP1 degradation requires an intact DIAP1 RING domain. Among the mutations affecting ubiquitination, we found ubcD1, which suppresses rpr-induced apoptosis. UBCD1 and Rpr specifically bind to DIAP1 and stimulate DIAP1 auto-ubiquitination in vitro. Our results identify a novel function of Rpr in stimulating DIAP1 auto-ubiquitination through UBCD1, thereby promoting its degradation.


Assuntos
Apoptose/fisiologia , Proteínas de Drosophila/metabolismo , Ligases/metabolismo , Peptídeos/metabolismo , Fatores Etários , Animais , Caspases/metabolismo , Contagem de Células , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Técnicas In Vitro , Proteínas Inibidoras de Apoptose , Ligases/genética , Mutagênese/fisiologia , Neurônios Aferentes/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos/genética , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA/fisiologia , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina
19.
Proc Natl Acad Sci U S A ; 105(37): 13805-10, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18779571

RESUMO

The proapoptotic factors Reaper, Hid, Grim, and Sickle regulate apoptosis in Drosophila by inhibiting the antiapoptotic factor DIAP1 (Drosophila inhibitor of apoptosis 1). Heat, UV light, x-rays, and developmental signals can all increase the proapoptotic factors, but the control of transcription of the diap1 gene is unclear. We show that in imaginal discs the single Drosophila STAT protein (STAT92E) when activated can directly increase DIAP1 through binding to STAT DNA-binding sites in the diap1 promoter. The STAT92E contribution to DIAP1 production is required for cell survival after x-irradiation but not under unstressed conditions. Because DIAP1 prevents apoptosis after a variety of stresses, STAT92E may have a role in regulating stress responses in general.


Assuntos
Apoptose/efeitos da radiação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Inibidoras de Apoptose/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sítios de Ligação , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Olho/citologia , Olho/metabolismo , Proteínas Inibidoras de Apoptose/genética , Fosforilação , Regiões Promotoras Genéticas/genética , Fatores de Transcrição STAT/deficiência , Fatores de Transcrição STAT/genética
20.
Elife ; 102021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605405

RESUMO

PERK is an endoplasmic reticulum (ER) transmembrane sensor that phosphorylates eIF2α to initiate the Unfolded Protein Response (UPR). eIF2α phosphorylation promotes stress-responsive gene expression most notably through the transcription factor ATF4 that contains a regulatory 5' leader. Possible PERK effectors other than ATF4 remain poorly understood. Here, we report that the bZIP transcription factor Xrp1 is required for ATF4-independent PERK signaling. Cell-type-specific gene expression profiling in Drosophila indicated that delta-family glutathione-S-transferases (gstD) are prominently induced by the UPR-activating transgene Rh1G69D. Perk was necessary and sufficient for such gstD induction, but ATF4 was not required. Instead, Perk and other regulators of eIF2α phosphorylation regulated Xrp1 protein levels to induce gstDs. The Xrp1 5' leader has a conserved upstream Open Reading Frame (uORF) analogous to those that regulate ATF4 translation. The gstD-GFP reporter induction required putative Xrp1 binding sites. These results indicate that antioxidant genes are highly induced by a previously unrecognized UPR signaling axis consisting of PERK and Xrp1.


Assuntos
Antioxidantes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Glutationa Transferase/metabolismo , Discos Imaginais/enzimologia , eIF-2 Quinase/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glutationa Transferase/genética , Discos Imaginais/embriologia , Fases de Leitura Aberta , Fosforilação , Rodopsina/genética , Rodopsina/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA