Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 88(3): 1391-1405, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35635156

RESUMO

PURPOSE: To develop a coil-based method to obtain accurate sensitivity profiles in 13 C MRI at 3T from the endogenous 23 Na. An eight-channel array is designed for 13 C MR acquisitions. As application examples, the array is used for two-fold accelerated acquisitions of both hyperpolarized 13 C metabolic imaging of pig kidneys and the human brain. METHODS: A flexible coil array was tuned optimally for 13 C at 3T (32.1 MHz), with the coil coupling coefficients matched to be nearly identical at the resonance frequency of 23 Na (33.8 MHz). This is done by enforcing a high decoupling (obtained through highly mismatched preamplifiers) and adjusting the coupling frequency response. The SNR performance is compared to reference coils. RESULTS: The measured sensitivity profiles on a phantom showed high spatial similarity for 13 C and 23 Na resonances, with average noise correlation of 9 and 11%, respectively. For acceleration factors 2, 3, and 4, the obtained maximum g-factors were 1.0, 1.1, and 2.6, respectively. The 23 Na profiles obtained in vivo could be used successfully to perform two-fold acceleration of hyperpolarized 13 C 3D acquisitions of both pig kidneys and a healthy human brain. CONCLUSION: A receive array has been developed in such a way that the 13 C sensitivity profiles could be accurately obtained from measurements at the 23 Na frequency. This technique facilitates accelerated acquisitions for hyperpolarized 13 C imaging. The SNR performance obtained at the 13 C frequency, compares well to other state-of-the-art coils for the same purpose, showing slightly better superficial and central SNR.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Animais , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Suínos
2.
Magn Reson Med ; 84(4): 1817-1827, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32167199

RESUMO

PURPOSE: Calibration of hyperpolarized 13 C-MRI is limited by the low signal from endogenous carbon-containing molecules and consequently requires 13 C-enriched external phantoms. This study investigated the feasibility of using either 23 Na-MRI or 1 H-MRI to calibrate the 13 C excitation. METHODS: Commercial 13 C-coils were used to estimate the transmit gain and center frequency for 13 C and 23 Na resonances. Simulations of the transmit B1 profile of a Helmholtz loop were performed. Noise correlation was measured for both nuclei. A retrospective analysis of human data assessing the use of the 1 H resonance to predict [1-13 C]pyruvate center frequency was also performed. In vivo experiments were undertaken in the lower limbs of 6 pigs following injection of hyperpolarized 13 C-pyruvate. RESULTS: The difference in center frequencies and transmit gain between tissue 23 Na and [1-13 C]pyruvate was reproducible, with a mean scale factor of 1.05179 ± 0.00001 and 10.4 ± 0.2 dB, respectively. Utilizing the 1 H water peak, it was possible to retrospectively predict the 13 C-pyruvate center frequency with a standard deviation of only 11 Hz sufficient for spectral-spatial excitation-based studies. CONCLUSION: We demonstrate the feasibility of using the 23 Na and 1 H resonances to calibrate the 13 C transmit B1 using commercially available 13 C-coils. The method provides a simple approach for in vivo calibration and could improve clinical workflow.


Assuntos
Prótons , Sódio , Animais , Isótopos de Carbono , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ácido Pirúvico , Estudos Retrospectivos , Suínos
3.
J Cereb Blood Flow Metab ; 41(11): 2916-2927, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013807

RESUMO

Acute ischemic stroke patients benefit from reperfusion in a short time-window after debut. Later treatment may be indicated if viable brain tissue is demonstrated and this outweighs the inherent risks of late reperfusion. Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate is an emerging technology that directly images metabolism. Here, we investigated its potential to detect viable tissue in ischemic stroke. Stroke was induced in pigs by intracerebral injection of endothelin 1. During ischemia, the rate constant of pyruvate-to-lactate conversion, kPL, was 52% larger in penumbra and 85% larger in the infarct compared to the contralateral hemisphere (P = 0.0001). Within the penumbra, the kPL was 50% higher in the regions that later infarcted compared to non-progressing regions (P = 0.026). After reperfusion, measures of pyruvate-to-lactate conversion were slightly decreased in the infarct compared to contralateral. In addition to metabolic imaging, we used hyperpolarized pyruvate for perfusion-weighted imaging. This was consistent with conventional imaging for assessment of infarct size and blood flow. Lastly, we confirmed the translatability of simultaneous assessment of metabolism and perfusion with hyperpolarized MRI in healthy volunteers. In conclusion, hyperpolarized [1-13C]pyruvate may aid penumbral characterization and increase access to reperfusion therapy for late presenting patients.


Assuntos
Infarto Encefálico/diagnóstico por imagem , AVC Isquêmico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ácido Pirúvico/metabolismo , Reperfusão/métodos , Animais , Encéfalo/metabolismo , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Estudos de Casos e Controles , Circulação Cerebrovascular/fisiologia , Endotelina-1/metabolismo , Feminino , Humanos , AVC Isquêmico/metabolismo , Modelos Animais , Imagem de Perfusão/métodos , Suínos
4.
IEEE Trans Biomed Circuits Syst ; 12(1): 202-210, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29377808

RESUMO

Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier operated at 77 K is designed and implemented for C imaging at 3 T (32.13 MHz), using off-the-shelves components. The design is based on a high electron mobility transistor (ATF54143) in a common source configuration. Required auxiliary circuitry for optimal cryogenic preamplifier performance is also presented consisting of a voltage regulator (noise free supply voltage and optimal power consumption), switch, and trigger (for active detuning during transmission to protect the preamplifier). A gain of 18 dB with a noise temperature of 13.7 K is achieved. Performing imaging experiments in a 3 T scanner showed an 8% increased signal-to-noise ratio from 365 to 399 when lowering the temperature of the preamplifier from 296 to 77 K while keeping the coil at room temperature. This paper thus enables the merger of cryogenic coils and preamplifiers in the hopes of reaching the ultimate limit of detection for MRI.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-30442598

RESUMO

OBJECTIVE: In this study, we describe a method to improve preamplifier decoupling in low frequency MRI receive coil arrays, where sample loading is low and coils exhibit a high Q-factor. METHODS: The method relies on the higher decoupling obtained when coils are matched to an impedance higher than 50 Ω. Preamplifiers with inductive (and low resistive) input impedance, increase even further the effectiveness of the method. RESULTS: We show that for poorly sample loaded coils, coupling to other elements in an array is a major source of SNR degradation due to a reduction of the coil Q-factor. An 8-channel 13C array at 32 MHz for imaging of the human head has been designed following this strategy. The improved decoupling even allowed constructing the array without overlapping of neighboring coils. Parallel imaging performance is also evaluated demonstrating a better spatial encoding of the array due to its non-overlapped geometry. CONCLUSION: The proposed design strategy for coil arrays is beneficial for low frequency coils where the coil thermal noise is dominant. The method has been demonstrated on an 8-channel array for the human head for 13C MRI at 3 T (32 MHz), with almost 2-fold SNR enhancement when compared to a traditional array of similar size and number of elements. SIGNIFICANCE: The proposed method is of relevance for low frequency arrays, where sample loading is low, and noise correlation is high due to insufficient coil decoupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA